
M A N N I N G

Jothy Rosenberg
Arthur Mateos

FOREWORD BY ANNE THOMAS MANES

The when, how, and why of enterprise cloud computing

The Cloud at
Your Service

The Cloud at
Your Service

The when, how, and why of
enterprise cloud computing

Jothy RosenbeRg
ARthuR MAteos

M A N N I N G

greenwich
(74° w. long.)

B	

 Copyeditor: Composure graphics
	 Composition: Composure graphics

Cover designer: Marija tudor

Isbn: 9781935182528
Printed in the united states of America
1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10

http://www.manning.com
mailto:orders@manning.com

v

brief contents
1 ■ What is cloud computing? 1

2 ■ understanding cloud computing classifications 18

3 ■ the business case for cloud computing 50

4 ■ security and the private cloud 72

5 ■ Designing and architecting for cloud scale 100

6 ■ Achieving high reliability at cloud scale 131

7 ■ testing, deployment, and operations in the cloud 148

8 ■ Practical considerations 169

9 ■ Cloud 9: the future of the cloud 188

vii

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix

1 

 ■  
 ■ Automation of new resource
  ■  

 ■ Agility
  ■ Efficiency benefits
  ■ Security stronger and better
in the cloud 8

 
 ■  
 ■ Housing of physical computing resources:
  ■ Software componentization and remote access: SOA,
virtualization, and SaaS 12

	 contents

 
 ■  
 ■ Private
clouds as precursors of public clouds 16

1.5 summary 17

2 

 ■ Ensuring high
  ■ Controlling remote servers
  ■   ■ Storing your
  ■ Elasticity: scaling your
application as demand rises and falls 36

 
 ■ Microsoft Azure: Infrastructure
  ■   ■ Ruby on Rails
  ■ Salesforce.com’s Force.com: Platform as a
  ■  

 ■ Microsoft Windows Azure IaaS and
  ■   ■ Ruby on Rails PaaS
  ■ Force.com PaaS cloud 48

2.4 summary 49

3 

 ■  

 ■ Applications involving real-time/mission-critical scenarios 63
Applications dealing with confidential data 63

	 ix

 

 ■ Example 1: FlightCaster—airline
  ■  

 ■ Medium-tech example: backup and
  ■  

 ■  
 ■ Virgin Atlantic: online web presence
and community 70

3.7 summary 71

4 

 ■ Major cloud data center
  ■   ■ Major cloud network
  ■  

 ■   ■ Certainty of resource
  ■   ■  
 ■ Private cloud deployment
options 88

 
 ■   ■ Implications 94

 
 ■ Bechtel Project Services
  ■ Government private clouds 96

4.5 the long-term viability of private clouds 98
4.6 summary 98

5 

 ■   ■   ■ Elastic
  ■ Summarizing the application patterns 103

	 contents

 
 ■  
 ■ How sharding changes an
  ■  
 ■  
 ■   ■ Sharding in real life:
how Flickr’s sharding works 113

 
 ■ The best of both worlds: internal data center plus
  ■   ■ Cloudbursting
  ■   ■ Cloudbursting:
  ■  

 ■   ■ Example cloud storage API
  ■   ■ Mountable file systems in the cloud 128
Addressing the challenging issue of latency 129

5.5 summary 130

6 

 ■   ■   ■ SOA and loose
  ■   ■ SOA and cloud
  ■  

 ■   ■ Hadoop: the open source MapReduce 146

6.3 summary 147

7 

 ■ Defining staging and testing
  ■  

 ■ Accelerating development
and testing 155

	 xi

 
 ■   ■   ■ Visual
  ■ Manual testing 167

7.4 summary 168

8 

 ■  

 ■   ■ Rackspace Cloud SLA 180

 
 ■ Visibility through third-party
providers 185

8.4 summary 186

9 

 ■  

 ■ Engine of growth for
  ■   ■ 500,000
  ■ Ratio of administrators to servers:
  ■   ■ Pragmatic standards
  ■   ■ Government
  ■  

 ■ Second and third tiers running in the
  ■   ■ Stronger
  ■ Higher-level services with unique
  ■   ■ PaaS and FaaS as
  ■ Evolution of development tools to build
  ■   ■ Development cost no
longer a barrier 212

	 contents

 
 ■ Significant benefits of adopting the
  ■   ■ Cloud
  ■  
 ■  
 ■ Designing for scale and
  ■   ■ Better
  ■ Choosing a cloud
  ■   ■ The future of cloud
computing 217

appendix Information security refresher 218

 index 224

xiii

foreword
Cloud computing is information technology (It) offered as a service. It eliminates
the need for organizations to build and maintain expensive data centers. It enables
organizations to stand up new systems quickly and easily. It provides elastic resources
that allow applications to scale as needed in response to market demands. Its pay-
as-you-go rental model allows organizations to defer costs. It increases business con-
tinuity by providing inexpensive disaster-recovery options. It reduces the need for
organizations to maintain a large It staff.

It is critically important: without it, most organizations can’t function effectively.
And yet, except in a few special cases, It typically doesn’t give its organization a
competitive advantage—it isn’t a core capability.

Modern economics are driving organizations to externalize noncore capabilities.
If the noncore capability available from an external provider is more cost effective,
then it should be externalized. by this criterion, It is a perfect candidate for
externalization.

Prior to the introduction of cloud computing, organizations externalized It by
outsourcing to It service providers. but It service provider relationships have never
been particularly elastic. Cloud computing offers many benefits over the traditional
It outsourcing model because of the on-demand nature of the cloud business
model. organizations engage cloud-computing service providers on an application-
by-application basis. It’s not an all-or-nothing proposition.

Is it any wonder that cloud computing is at the center of the latest hype storm?
Vendors are busy “cloud washing” their product suites and updating their marchitecture

	 foreword

slide decks, hoping to capitalize on this opportunity. (It’s remarkable how rapidly a
terrestrial product can morph into a cloud offering.)

but moving to the cloud turns out to be more challenging than it first appears. the
cloud-computing business model is still in its nascent stages, and quite a few issues
remain to be worked out. The Cloud at Your Service is dedicated not to adding to the
hype, but rather to cutting through the complexity, to aiding the decision-makers and
buyers, and to helping companies develop a strategy for identifying what to move to
the cloud, what not to move to the cloud, and when and how to do it.

It’s easy to find one or two new noncritical applications with minimal dependencies
to deploy in the cloud. but cloud adoption gets a lot trickier when you begin talking
about shifting major applications to the cloud. Most cloud providers aren’t willing
to offer robust service-level agreements (sLAs). Can you afford to be without an
application for an hour? Four hours? A day? some cloud providers are willing to
negotiate for stronger sLAs—but then the price goes up, and the compelling business
case suddenly becomes much more questionable. And what happens if your chosen
cloud provider goes out of business or fails to meet your requirements? how easily
could you change providers or bring the application back on-premises?

What guarantees do the cloud providers give to ensure compliance with changing
laws and regulations? And what about sensitive information? how damaging would it
be if sensitive data leaked out? Most business applications have extensive dependencies
on other applications and databases. how do you enable interoperability between
cloud-based applications and the applications that remain on-premises?

these are the issues large enterprises have. It’s precisely to help those enterprises
that Jothy Rosenberg and Arthur Mateos wrote this book. Vendor hype, questionable
business cases, and indeterminate risks increase consumer apprehension and hinder
cloud adoption. but despite these issues, cloud computing is incredibly compelling.
It organizations need to understand the risks and benefits to gain the most value
from cloud computing. The Cloud at Your Service, aimed at It buyers (as opposed to
programmers), is just what’s needed.

Anne ThomAs mAnes

Vice PresidenT And reseArch direcTor

BurTon GrouP reseArch, A diVision of GArTner, inc.

xv

preface
Like you, we live and work in the world of computing and computers, and we track
trends and transformations as they occur. We’re old enough to have witnessed main-
frames and their “virtualization of time” model. We lived through the transition
from minicomputers to the radical new model of client-server computing. With
the same awe you had of connecting to the entire world, we witnessed the amazing
change brought on by the web.

We bring that perspective to the current transformation called cloud computing.
We’ve seen this movie before and know the danger of over-hyping something to
death. (Literally to death—the term artificial intelligence had to be permanently
put to rest after it made the cover of Time magazine.) We don’t think this is hype.
We see something different going on this time that isn’t being exaggerated out of
proportion.

We see an It transformation that isn’t primarily technology-based as the previous
ones were. the same servers running the same operating systems supporting the same
applications are running in corporate data centers as run in the cloud. sure, developers
have to learn a few new twists, but nothing more than they have to learn on a monthly
basis anyway. Instead of technology being the basis of the change, this time it’s mostly
about economics and business models. that’s very different, very interesting, and the
reason we think this one is bigger than anything we’ve seen before.

We understand both small startups and big corporate It. our careers have been
involved with both. We’ve lived in startups, and we’ve sold to and worked with large
corporate It groups for many years. As time has gone by, the ability of large It
organizations to change on a dime has diminished. We understand this trepidation

	 xvi

about change—especially a change that may directly impact the entire organization
under the corporation’s CIo. that is why we wrote this book.

We had to convince Manning to publish a book that wasn’t aimed squarely at
programmers. When we told them the book had no source code, that didn’t compute.
We held firm, arguing that a huge need exists for a book that tells it like it is for
the enterprise It worker. the cloud will eventually have its greatest effect on the
largest of organizations. but they’re precisely the organizations that have the most
trouble changing. We wanted to talk directly to you about how undertake this shift,
what it will mean to you and your organization, and how to proceed in a sane and
reasonable manner.

If you’re in corporate It, this book is directly written to help you. If you’re in a
startup, you’ll find many things in this book useful as well. If you’re a programmer,
this may be a good addition to your bookshelf. And even if you’re just curious, you’ll
find this book approachable, not too deeply technical, and a thorough introduction
to cloud computing.

We hope the book is being published at a time that makes it helpful to the largest
number of people. And we hope you find this book useful and enjoyable as you consider
embarking on a journey into the clouds.

xvii

acknowledgments
Many people played a role in the long process of creating the book that you now
hold in your hands, either by contributing to the body of knowledge that it contains,
or by making comments and improvements to the manuscript during its writing and
development.

We’d like to start with a big thank-you to the team at Manning for their support
and guidance as this book evolved. they include Marjan bace, Mike stephens, emily
Macel, Karen tegtmeyer, Rachel schroeder, tiffany taylor, and Mary Piergies; and
there were no doubt many others, through whose hands the manuscript passed on
its journey from first draft to bound book.

thanks also to the following reviewers who read the manuscript at different stages
of its development, for their feedback and comments: David sinclair, Kunal Mittal,
Deiveehan nallazhagappan, Robert hanson, timothy binkley-Jones, shreekanth
Joshi, orhan Alkan, Radhakrishna M.V., sumit Pal, Francesco goggi, Chad Davis,
Michael bain, Patrick Dennis, Robby o’Connor, and Christian siegers. Also a big
shout-out to the readers of Manning’s early Access Program (MeAP) for their careful
reading of the early drafts of the chapters and their posts in the online forum.

special thanks to Patrick Lightbody for contributing chapter 7, to shawn henry
for managing the final technical review of the manuscript shortly before it went to
press, and to Anne thomas Manes for agreeing to pen the foreword to our book.

Jothy Rosenberg

First, I want to thank Dave Fachetti, a partner at globespan Capital Venture Part-
ners. As an entrepreneur-in-residence in his company, I had the chance to fully

	 xviii

explore the emerging cloud market. Dave’s strong vision of creating a new startup that
would serve the big enterprises reflected far-sightedness. he had a rare amalgama-
tion of CIos from about a dozen large enterprises. they covered the gamut in their
understanding and acceptance of cloud computing. the opportunity of interacting
with them greatly influenced my decision about what type of book was needed for the
enterprise CIo group to successfully adopt the cloud.

I would like to thank my coauthor, Arthur Mateos. Arthur was in a leadership role
at gomez, a heavy cloud user, and interacted with real users of the cloud every day.
he and his team saw firsthand how the cloud was enabling new business models in
exciting, transformative ways. but most important, it was Arthur who provided that
extra push to make me take the plunge and agree to lead our effort to create this
much-needed book.

emily Macel is a freelance editor whom Manning brought in to work as development
editor. It was her job to push and prod us to get chapters written, to stay on schedule,
and to write material that was coherent, complied with Manning guidelines, and was
high quality. easy to do, I suppose, in a demanding, evil way. but emily did it the hard
way. thank you to emily for her kindness, patience, support, and humor. she made the
hard work of creating a book fun.

My wife, Carole hohl, thinks I am crazy because I always take on too much. When
I added this book to my stack, she and my daughter Joanna, who lives with us while
in graduate school, probably contemplated having me committed. thank you, Carole
and Joanna, for being incredibly supportive even when chapter deadlines sometimes
robbed us of precious weekend time!

Arthur Mateos

there are several people I’d like to thank for helping us pull this book together.
First, I’d like to thank my former colleagues in the emerging technology group

at gomez, particularly Jason Debettencourt, Imad Mouline, and Patrick Lightbody.
In 2007, we began prototyping new saas products, utilizing the cloud for load-testing
internet-facing load applications. It was through this early experimentation and
commercialization of those products that I experienced firsthand the coming cloud
revolution. A special thanks to Patrick, who also pitched in by writing chapter 7, “testing,
Deployment, and operations in the Cloud.”

I’d also like to thank Jothy Rosenberg for agreeing to join me in this project. Jothy
had been pursuing a path parallel to mine, exploring cloud technologies with venture
investors as potential business opportunities. the book would not have become a
reality without his deep cloud expertise and boundless capacity for hard work.

Finally, I’d like to thank my wife, grace, and our children, Arthur and Katherine, for
their love and support during the writing of this book.

xix

about this book
Cloud computing, if used properly, is a technology with tremendous promise and
potential opportunity for businesses of all sizes. yet it’s a challenge for It and busi-
ness executives today to get a clear understanding of this technology while being
overloaded by hype and often inaccurate information peddled by self-serving ven-
dors and analysts.

how do you clear up the confusion; get past the fear, uncertainty, and doubt;
and understand how and when the cloud best serves your organization’s goals and
needs?

It organizations face numerous challenges and operate with increasingly large
workloads. severe budgetary and headcount constraints are other banes. this is why
we believe it’s a survival imperative to be able to appropriately harness the cloud as
a potential new power tool for the It toolbox.

the hype is more extreme than with previous It fads or disruptions. this
is because today, the industry is much bigger, and many more new vendors are
chasing what is to them the next shiny new opportunity. Consequently, hype
is overshadowing reality. this is making it next to impossible for responsible It
managers and business decision-makers to get a clear understanding of what the
cloud really means, what it might do for them, when it’s practical, and what their
future with the cloud looks like. but don’t let this hype discourage you from what
has enormous potential benefits for your business. We aim to help cut through all
this fog and help you make these critical decisions based on facts and our informed,
unbiased recommendations and predictions.

	 xx

The intended audience for this book
this book is for business managers, It managers, It architects, CIos, Ctos,
Ceos, It strategy decision-makers, and all potential cloud services buyers. Cloud
computing will be the disruptive technology of this new decade. As in the early stages
of every previous major disruption of the It industry, there is confusion, hype, fear,
uncertainty, and doubt. this book aims to cut through the hype to give you a clear, un-
biased view of the technology and its immense potential opportunity for you and your
business. the following is a more detailed breakdown of the roles and responsibilities
of the target audience.

Enterprise line of business managers

you were the first users of all previous It disruptive technologies. you have develop-
ment teams and a set of business drivers that cause you to be innovative and experi-
mental. you get frustrated at the six-plus months it takes It to provision new servers
you request. you’ve discovered that you can provision what you need in the cloud in 10
minutes. this sets up conflicts with central It, especially in these days of heightened
governance and regulation. Consequently, you’re hungry to learn about the cloud vis-
à-vis your large enterprise issues.

Corporate IT managers and IT architects

your budgets are down, yet your workload keeps going up. Although you constantly
hear about the cloud, you know only a little about it. but you’re inundated by the hype
mills and can’t figure out what is real. your knee-jerk reaction toward it is doubt. you
need a quick, easy way to get to the truth of what it means for you and when the time
is right for you to get in.

Enterprise CEOs, CIOs, CTOs, Chief Security Officers, and Chief Risk Officers

senior corporate officers are risk averse and have sober responsibilities to protect your
organizations. but at the same time, you don’t want to miss an opportunity to get an
advantage before your competitors. you don’t want the technical details, only the “so
whats” and the truth about the cloud. this book will appeal very directly to you and
arm you with critical information to assess what your staff is telling you.

Corporate IT strategy decision-makers

you work with or for the It folks above or perhaps you’re consultants brought in to
help the It organization make a strategic move to the cloud. you need a resource ex-
plaining all the facts and trends clearly without technical jargon to help you help your
bosses make these hard decisions and decide the time when they need to be made.

Potential cloud services buyers

this category covers everyone else not covered earlier, if you’re in the market to buy
cloud services, especially if you’re a small or medium-sized business. you want to learn

	 about this book

about a new It phenomenon that may help you. Amazon Web services already has
600,000 small and medium-sized companies as active customers and is continuing
to grow quickly. this book is different from other books on the market about cloud
computing because it genuinely helps you get to the point of what the cloud may mean
to you, when it may fit your It strategy, and how you go about getting there without
being loaded down with programming details you don’t want or need.

Who this book is not intended for
If you’re a professional programmer or a cloud expert, this book isn’t designed to be
your primary resource. you may still decide to add it to your bookshelf, but you’ll need
other books that get into details about various APIs, libraries, and frameworks you’ll
want to consider using.

having said that, this book may help give you the perspective of the previously listed
job descriptions. they’re most likely your bosses or clients, and knowing how they
think and how they’re approaching the cloud will help make your job easier.

What you can expect to find in this book
this nine-chapter book covers everything you need to know about shifting some or
all of your enterprise It operations to the cloud. We’ve broken it into a few chapters
of introduction to the cloud, how it works, and the business case for it. going deeper
into the technology, we discuss how to set up a private cloud, how to design and archi-
tect new applications that will take advantage of the cloud’s unique aspects, and how
the cloud changes the way you test, deploy, and operate applications. the concluding
chapters include a series of practical considerations you’ll want to think about before
migrating to or developing for the cloud, and our take on what the future holds for
cloud computing.

More specifics about what to expect from these nine chapters are outlined here.
Chapter 1, “What is cloud computing?” provides a general overview of the concepts

of cloud computing. It touches briefly on the evolution of cloud computing and the
growing importance of cloud computing as a boon for enterprises.

Chapter 2, “understanding cloud computing classifications,” provides an
understanding of the technological underpinnings of cloud computing. It presents
a framework for understanding the various types of cloud providers and gives an
overview of their capabilities. It ends with a brief discussion on how to choose a cloud
provider.

Chapter 3, “the business case for cloud computing,” discusses the economic
implications of cloud-based computing. It starts with a simplified comparison of
different implementation models. next, we look at specific examples of the cost
benefit/RoI of cloud-based implementations for different sizes of organizations.

Chapter 4, “security and the private cloud,” deals with the number-one issue preventing
people from adopting the cloud: security. the primary question is, “Will my data be
safe?” the short answer is that security will be as much up to your policies, procedures,
and careful software engineering as it ever was. yes, in some (rare) instances, there is

	 xxii

zero room for mistakes (for example, data related to national security), and a private
cloud is warranted. As a step toward full public-cloud computing, some large enterprises
are turning their existing (sunk-cost) data centers into private clouds. Why do they want
to do this? Is it a good idea?

Chapter 5, “Designing and architecting for cloud scale,” discusses the unique aspects
of high-scale applications and how to design and architect them so they can handle the
full onslaught of the entire world using your application.

Chapter 6, “Achieving high reliability at cloud scale,” covers topics related to using
cheap hardware in high volumes and how to deal with the expected failures of such
hardware gracefully while continuing to give good service to a potentially huge number
of users.

Chapter 7, “testing, deployment, and operations in the cloud,” relates to the fact
that the cloud represents a different environment in which to operate from the way
things are done in internal It data centers. this chapter discusses those differences in
the areas of how applications are tested, deployed, and then operated in a production
scenario.

Chapter 8, “Practical considerations,” looks at the practical considerations involved
in running successful applications in the cloud. beginning with the technical and
business challenges that you must consider, it moves on to a discussion of the most
important operational issues.

Chapter 9, “Cloud 9: the future of the cloud,” discusses the future evolution of cloud
computing and forecasts how the technology will evolve over the next two decades.

Author Online
Purchase of The Cloud at Your Service includes free access to a private web forum
run by Manning Publications where you can make comments about the book,
ask questions, and receive help from the authors and from other users. to access
the forum and subscribe to it, point your web browser to www.manning.com/
theCloudatyourservice. this page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct on
the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the Ao remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray! the
Author online forum and the archives of previous discussions will be accessible from
the publisher’s website as long as the book is in print.

About the authors
JoThy rosenBerG has a PhD in computer science from Duke university in the area of
computer-aided design. he remained at Duke as professor of computer science until

http://www.manning.com/

	 about this book

he became an entrepreneur. Jothy went on to found seven high-tech startups in areas
ranging from distributed computing application management to massively parallel su-
percomputers to web services monitoring and security.

Most recently, Jothy was technical director for bAe systems, running several major
DARPA contracts and helping bAe develop cloud computing expertise. before that, he
ran It investments for Angle technology Ventures, commercializing university IP into
new startups and creating two companies in that process (Aguru and Mogility). Previously,
Jothy was software Cto of Ambric (semiconductor manufacturer of a teraops chip for
highly compute-intensive parallel applications), founder and Ceo of service Integrity
(service-oriented architecture and web services monitoring), founder and Coo of
geotrust (internet security), Ceo of novasoft (secure content management), and co-
founder of Webspective (website load-balancing and quality of service). Webspective
and geotrust were two companies Jothy founded that had exits greater than $100M.
Jothy also held various executive positions at borland International, including vice
president and general manager of the enterprise tools Division, which was responsible
for the borland C++, Delphi, and Jbuilder development tools.

Jothy is the author of two successful technical books: How Debuggers Work (Wiley,
1996) and Securing Web Services with WS-Security (sams, 2004). he also holds several
patents.

throughout his career, Jothy has been involved with each computing architectural
disruption (distributed computing, the internet, client-server, web services, and now
the cloud) from their earliest glimmer to when they become mainstream. In many
cases, he has built new companies to help make other companies’ navigation through
the disruption smoother. Jothy also recently published a memoir titled Who Says I Can’t
(bascom hill, 2010) and participates annually in athletic endeavors that have raised
over $115,000 to date for charitable causes.

ArThur mATeos began his career as an experimental nuclear physicist, specializing
in the use of high-performance computing in the analysis of the prodigiously gener-
ated multi-terabyte data sets that are the result of colliding particles together violently
at speeds close to the speed of light. Impatient at the pace of progress in high energy
physics, he left that world to become a technology entrepreneur.

At Webspective and Inktomi, he was the product manager for the web application
management and content distribution product lines. Arthur was an early pioneer of the
CDn space and has a patent awarded on content distribution technology. he founded
service Integrity, a company focused on web services management and providing real-
time business intelligence for soA.

Most recently, Arthur was the VP and general manager of emerging technologies
at gomez, the web performance division of Compuware. Arthur championed and
led the development of a suite of innovative new saas offerings focused on the pre-
deployment lifecycle management off web applications. the flagship offering, Reality
Load, employs multiple clouds, including gomez’s own distributed worldwide cloud
of over 100,000 geographically distributed measurement agents as well as those from

	 about this book

multiple commercial cloud providers such as eC2 and gogrid to produce the most
realistic load tests possible for Internet facing applications.

Arthur holds an A.b. in physics from Princeton university and a PhD in nuclear
physics from MIt.

About the foreword author

Anne ThomAs mAnes is vice president and research director with the burton group,
a research division of gartner, Inc., an It research and advisory group. (see www.
burtongroup.com.) she leads research on application development and delivery
strategies, with a specific focus on service-oriented architecture (soA) and cloud
computing.

Anne is a widely recognized industry expert on application architecture and
soA. she is notorious for her controversial weblog post “soA Is Dead; Long Live
services.” she is one of the authors of the soA Manifesto (www.soa-manifesto.
org), the author of a forthcoming book on soA governance (http://soabooks.
com/governance), and the author of Web Services: A Manager’s Guide (Addison-
Wesley Professional, 2003)). she is a frequent speaker at trade shows and author of
numerous articles.

About the cover illustration
the figure on the cover of The Cloud at Your Service is captioned “Le mercier,” which
translates to haberdasher or a retail dealer in men’s furnishings, such as shirts, ties,
gloves, socks, and hats. the illustration, which is finely drawn and colored by hand, is
taken from a 19th-century collection of French dress customs published in France.

the rich variety of this collection reminds us vividly of how culturally apart the
world’s towns and regions were just 200 years ago. Isolated from each other, people
spoke different dialects and languages. In the streets or in the countryside, it was
easy to identify where they lived and what their trade or station in life was just by
their dress.

Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now hard to tell apart the inhabitants of different
continents, let alone different towns or regions. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it’s hard to tell one computer book from another, Manning
celebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life
by illustrations such as this one.

http://www.burtongroup.com
http://www.burtongroup.com
http://www.soa-manifesto.org
http://www.soa-manifesto.org
http://soabooks.com/governance
http://soabooks.com/governance

1

1

What is cloud computing?

This chapter covers
■ Defining the five main principles of

cloud computing

■ Benefiting from moving to the cloud

■ How evolving IT led to cloud computing

■ Discussing the different layers
(types) of clouds

Cloud computing is the hottest buzzword in the IT world right now. Let’s understand
why this is and what this cloud computing hype is all about. A growing consensus
among cloud vendors, analysts, and users defines cloud computing at the highest
level as computing services offered by a third party, available for use when needed,
that can be scaled dynamically in response to changing needs. Cloud computing
represents a departure from the norm of developing, operating, and managing IT
systems. From the economic perspective, not only does adoption of cloud comput-
ing have the potential of providing enormous economic benefit, but it also provides
much greater flexibility and agility. We’ll continue to refine and expand our defi-
nition of cloud computing as well as your understanding of its costs and benefits
throughout this book.

2 CHAPTER 1 What is cloud computing?

Not only are IT journals and IT conferences writing and talking about cloud
computing, but even mainstream business magazines and the mass media are caught
up in its storm. It may win the prize for the most over-hyped concept IT has ever
had. Other terms in this over-hyped category include Service-Oriented Architectures
(SOA) , application service providers , and artificial intelligence, to name a few. Because
this book is about cloud computing, we need to define it at a much more detailed level.
You need to fully understand its pros and cons, and when it makes sense to adopt it, all
of which we’ll explain in this chapter. We hope to cut through the hype; and to do that
we won’t merely repeat what you’ve been hearing but will instead give you a framework
to understand what the concept is all about and why it really is important.

You may wonder what is driving this cloud hype. And it would be easy to blame
analysts and other prognosticators trying to promote their services, or vendors trying
to play up their capabilities to demonstrate their thought leadership in the market,
or authors trying to sell new books. But that would ignore a good deal of what is
legitimately fueling the cloud mania. All of the great expectations for it are based on
the facts on the ground.

Software developers around the world are beginning to use cloud services. In the
first 18 months that it was open for use, the first public cloud offering from Amazon
attracted over 500,000 customers. This isn’t hype; these are facts. As figure 1.1 from
Amazon’s website shows, the bandwidth consumed by the company’s cloud has quickly
eclipsed that used by their online store. As the old adage goes, “where there’s smoke,
there must be a fire,” and clearly something is driving the rapid uptake in usage from
a cold start in mid-2006.

Bandwidth Consumed by
Amazon Web Services

Bandwidth Consumed by
Amazon’s Global Websites

2001 2002 2003 2004 2005 2006 2007 2008

Figure 1.1 Amazon originally deployed a large IT infrastructure to support its
global e-commerce platform. In less than 18 months after making the platform
available as a cloud service to external users, its usage, as measured by amount
of bandwidth consumed, outstripped bandwidth used internally.

Five main principles that define cloud computing 3

Similar to the previous technology shifts—such as the move from mainframes to client-
server, and then from client-server to the internet—cloud computing will have major
implications on the business of IT. We hope to provide you with the background and
perspective to understand how it can be effectively used as a component of your overall
IT portfolio.

We’ll begin by expanding on our earlier definition of cloud computing in terms of
its five main principles.

1.1 Five main principles that define cloud computing
We can summarize the five main principles of cloud computing as follows:

Pooled computing resources available to any subscribing users■

■ Virtualized computing resources to maximize hardware utilization
■ Elastic scaling up or down according to need
■ Automated creation of new virtual machines or deletion of existing ones
■ Resource usage billed only as used

We assert, with very few notable exceptions called out later, that these five main princi-
ples are necessary components to call something cloud computing. They’re summarized
in table 1.1 with a brief explanation of each one for quick reference.

Table 1.1 The five main principles of cloud computing

Resource Explanation

Pooled resources Available to any subscribing users

Virtualization High utilization of hardware assets

Elasticity Dynamic scale without CAPEX

Automation Build, deploy, configure, provision, and move, all without manual
intervention

Metered billing Per-usage business model; pay only for what you use

We’ll now discuss these principles in concrete terms, making sure you understand what
each one means and why it’s a pillar of cloud computing.

1.1.1 Pooled computing resources

The first characteristic of cloud computing is that it utilizes pooled computing assets
that may be externally purchased and controlled or may instead be internal resources
that are pooled and not dedicated. We further qualify these pooled computing re-
sources as contributing to a cloud if these resources are available to any subscribing
users. This means that anyone with a credit card can subscribe.

If we consider a corporate website example, three basic operational deployment
options are commonly employed today. The first option is the self-hosting option. Here,

4 CHAPTER 1 What is cloud computing?

companies choose not to run their own data center and instead have a third party lease
them a server that the third party manages. Usually, managed hosting services lease
corporate clients a dedicated server that isn’t shared (but shared hosting is common
as well). On this single principle, cloud computing acts like a shared managed hosting
service because the cloud provider is a third party that owns and manages the physical
computing resources which are shared with other users, but there the similarity ends.

Independent of cloud computing, a shift from self-hosted IT to outsourced IT
resources has been underway for years. This has important economic implications.
The two primary implications are a shift of capital expenses (CAPEX) to operational
expenses (OPEX), and the potential reduction in OPEX associated with operating
the infrastructure. The shift from CAPEX to OPEX means a lowering of the financial
barrier for the initiation of a new project. (See the definition in section 3.1.)

In the self-hosted model, companies have to allocate a budget to be spent up front
for the purchase of hardware and software licenses. This is a fixed cost regardless of
whether the project is successful. In an outsourced model (managed hosting), the
startup fees are typically equivalent to one month’s operational cost, and you must
commit to one year of costs up front. Typically, the one-year cost is roughly the same
or slightly lower than the CAPEX cost for an equivalent project, but this is offset by the
reduced OPEX required to operate the infrastructure. In sharp contrast, in a cloud
model , there are typically no initial startup fees. In fact, you can sign up, authorize
a credit card, and start using cloud services literally in less time than it would take to
read this chapter. Figure 1.2 showcases side by side the various application deployment
models with their respective CAPEX and OPEX sizes.

The drastic difference in economics that you see between the hosting models and
the cloud is due to the fact that the cost structures for cloud infrastructures are vastly
better than those found in other models. The reasons for the economies of scale are
severalfold, but the primary drivers are related to the simple economics of volume.
Walmart and Costco can buy consumer goods at a price point much lower than you or
I could because of their bulk purchases. In the world of computing, the “goods” are
computing, storage, power, and network capacity.

Figure 1.2 IT organizations have several alternatives for
hosting applications. The choice of deployment model has
different implications for the amount of CAPEX (up-front
capital expenditure) and OPEX (ongoing operational costs).
The number of $ signs represent the relative level of CAPEX
and OPEX involved with the choice of deployment model.

Application deployment models

Own data
center

CAPEX: $$$
OPEX: $$$

Colocation

CAPEX: $$
OPEX: $$

Managed
hosting

CAPEX: 0
OPEX: $$$

Cloud
computing

CAPEX: 0
OPEX: $$

1.1.2Virtualization of compute
resources

The second of the five main
principles of cloud computing
has to do with virtualization of
compute resources. Virtualiza-
tion is nothing new. Most enter-
prises have been shifting much
of their physical compute infra-
structure to virtualized for the
past 5 to 10 years. Virtualization
is vital to the cloud because the

Five main principles that define cloud computing 5

scale of cloud infrastructure s has to be enormous, based on thousands of servers. Each
server takes up physical space and uses significant power and cooling. Getting high
utilization out of each and every server is vital to be cost effective.

The recent technological breakthrough that enabled high utilization on commodity
hardware —and which is the single biggest factor behind the cloud being a recent IT
phenomenon—is virtualization where each physical server is partitioned into many
virtual servers. Each one acts like a real server that can run an operating system and
a full complement of applications.1 Virtualized servers are the primary units that can
be consumed as needed in the cloud. These virtualized servers constitute a large pool
of resources available when required. But having such a large pool will work only if
applications can use more or less of the pool as demands placed on the applications
grow and shrink. As you’ll see in chapter 4, the notion of a private cloud softens this
first principal but keeps all the others.

1.1.3 Elasticity as resource demands grow and shrink

The fact that this large pool of resources exists enables a concept known as elasticity —
the third of our five main principles. Elasticity is such a key concept in cloud comput-
ing that Amazon decided to name its cloud Amazon Elastic Compute Cloud.

Elasticity—a synonym for dynamic scaling —refers to the ability to dynamically
change how much resource is consumed in response to how much is needed. Typical
applications require a base level of resources under normal, steady-state conditions,
but need more resource under peak load conditions.

In a non-cloud world, you would have to build sufficient capacity to not only
perform adequately under baseline load conditions, but also handle peak load
scenarios with sufficiently good performance. In the case of a self-hosted model, this
means over-provisioning the amount of hardware for a given allocation. In the case of
a managed hosting deployment, you can start with a small set of resources and grow as
the requirements of the application grow. But provisioning for a new set of dedicated
hardware resources takes weeks or, in many larger organizations, months. Having
thousands of virtualized resources that can be harnessed and released in correlation to
application demand would be useless if such allocation and freeing required manual
intervention.

1.1.4 Automation of new resource deployment

The ability to automatically (via an API) provision and deploy a new virtual instance
of a machine, and, equivalently, to be able to free or de-provision an instance, is our
fourth principle of cloud computing. A cloud-deployed application can provision new
instances on an as-needed basis, and these resources are brought online within min-
utes. After the peak demand ebbs, and you don’t need the additional resources, these

1 The rapid shift to multicore servers only strengthens the impact of virtualization. Each virtual machine with
its operating system and full complement of applications can run on its own core simultaneously with all
other virtual machines on the same physical server.

6 CHAPTER 1 What is cloud computing?

virtual instances can be taken offline and de-provisioned, and you will no longer be
billed. Your incremental cost is only for the hours that those additional instances were
in use and active.

1.1.5 Metered billing that charges only for what you use

The fifth distinguishing characteristic of cloud computing is a metered billing model.
In the case of managed hosting, as we mentioned before, there typically is an initial
startup fee and an annual contract fee. The cloud model breaks that economic barrier
because it’s a pay-as-you-go model. There is no annual contract and no commitment
for a specific level of consumption.

Typically, you can allocate resources as needed and pay for them on an hourly basis.
This economic advantage benefits not only projects being run by IT organizations,
but also innumerable entrepreneurs starting new businesses. Instead of needing
to raise capital as they might have in the past, they can utilize vast quantities of
compute resources for pennies per hour. For them, the cloud has drastically changed
the playing field and allowed the little guy to be on equal footing with the largest
corporations.

1.2 Benefits that can be garnered from moving to the cloud
“I’ll never buy another server again,” said the Director of IT for a medium-sized
Software-as-a-Service (SaaS) company, only partially in jest, after recently completing
the deployment of a new corporate website for his organization. This website (a PHP-
based application with a MySQL backend) showcased the corporate brand and the
primary online lead-generation capability for the company’s business.

Before the overhaul, it was run from a redundant pair of web servers hosted
by one of the leading managed-hosting service providers at a total cost of roughly
$2,200/month. The company replaced the infrastructure for the original website
with a cloud implementation consisting of a pair of virtual server instances running
for roughly $250/month—almost a 90 percent savings! Its quality of service (QoS)
team monitored the performance and availability of the website before and after the
change and saw no measureable difference in the service quality delivered to end
users. Buoyed by the success with this initial project, this organization is looking at
all future initiatives for the possibility of deployment within the cloud, including a
software-build system and offsite backup.

1.2.1 Economic benefits of the change from capital to operational expenses

As we said when discussing the five main principles of cloud computing, the fundamen-
tal economic benefit that cloud computing brings to the table is related to the magical
conversion of CAPEX to OPEX. A pay-as-you-go model for resource use reshapes the
fundamental cost structure of building and operating applications. The initial barrier
to starting a project is drastically reduced; and until there is dramatic uptake in the use
of an application that has been developed, the costs for running it remain low.

Benefits that can be garnered from moving to the cloud 7

The good news is that this isn’t the only cost advantage. By harnessing the cloud,
you can also take advantage of cloud providers’ economic leverage because of the
volume at which they can purchase hardware, power, and bandwidth resources.

In many cases, the economic benefits discussed here will pan out—but as you’ll see
later, there are always exceptions. For some situations and applications, it makes better
economic sense not to use cloud computing. It isn’t a panacea.

1.2.2 Agility benefits from not having to procure and provision servers

In addition to lowering the financial barrier to initiating new projects, the cloud ap-
proach improves an organization’s agility . It comprehensively reduces the months of
planning, purchasing, provisioning, and configuring.

Let’s take as an example a performance-testing project launching a new consumer-
facing website. In the old world, there were two ways to solve this problem, depending
on your timeframes and budget. The first involved purchasing a software license
for a load-testing tool like HP Mercury LoadRunner and purchasing the requisite
servers to run the load-testing software. At that point, you were ready to script your
tests and run your test plan. Alternatively, you could hire an outside consulting
company that specialized in performance testing and have it run the tests for you.
Both were time-consuming exercises, depending on how long it took to negotiate
either the licensing agreement for the software or the consulting agreement with
the outside firm.

Fast-forward to the new world of cloud computing. You have two new faster and
more flexible ways of accomplishing the same task: use an open-source load-testing
application installed on cloud instances, and use the cloud’s virtual machines to
perform the load test (on as many servers as you need). The time required to
set up and begin applying load to a system is under half an hour. This includes
signing up for an account, as the Python open source load-testing tool called Pylot
demonstrates (see http://coreygoldberg.blogspot.com/2009/02/pylot-web-load-
testing-from-amazon.html).

If you’re looking for a more packaged approach, you can use one of the SaaS
offerings that uses the cloud to generate traffic. They can automatically run tests in a
coordinated fashion across multiple instances running from multiple cloud operators,
all in an on-demand fashion. In either of these scenarios, the time to result is a matter
of hours or days, generating time, not to mention cost efficiencies. We’ll explore more
about cloud-based testing in chapter 7.

1.2.3 Efficiency benefits that may lead to competitive advantages

Adopting cloud technologies presents many opportunities to those who are able to
capitalize on them. As we have discussed, there are potential economic as well as
time-to-market advantages in using the technology. As organizations adopt cloud com-
puting, they will realize efficiencies that organizations that are slower to move won’t
realize, putting them at an advantage competitively.

http://coreygoldberg.blogspot.com/2009/02/pylot-web-load-testing-from-amazon.html
http://coreygoldberg.blogspot.com/2009/02/pylot-web-load-testing-from-amazon.html
http://coreygoldberg.blogspot.com/2009/02/pylot-web-load-testing-from-amazon.html

8 CHAPTER 1 What is cloud computing?

1.2.4 Security stronger and better in the cloud

Surprised by the heading? Don’t be: it’s true. As you’re aware, corporate buildings
no longer have electrical generators (which they used to) because we leave electric-
ity generation to the experts. If corporations have their own data centers, they have
to develop standard security operating procedures. But it’s not their core business to
run a secure data center. They can and will make mistakes. A lot of mistakes. The total
annual fraud and security breach tab is $1 trillion, according to cybersecurity research
firm Poneman (www.nationalcybersecurity.com).

But first, as always, you must weigh the potential benefits against the potential
costs. You must take into account other factors, such as reliability and performance,
before making the leap into the clouds. In future chapters, we’ll address these issues;
but suffice it to say we believe that after you understand them and take the proper
measures, they can be managed. This done, you’ll be able to realize the full benefits of
moving to the cloud.

In the next section, we’ll look at the evolution of technology that enabled cloud
computing. This short detour into history is important because you can learn from
previous platform shifts to understand what is similar and what is different this time.
That in turn can help you make informed decisions about your shift to this new
evolution of IT—the cloud.

1.3 Evolution of IT leading to cloud computing
Cloud computing didn’t sprout fully formed from the technology ether in 2005. Its
technological underpinnings developed over the course of the last 40 or so years. The
technological process was evolutionary, across several disparate areas. But these ad-
vances, aggregated into a bundle, represent a revolutionary change in the way IT will
be conducted in the future.

Gillett and Kapor made the first known reference to cloud computing in 1996 in
an MIT paper (http://ccs.mit.edu/papers/CCSWP197/CCSWP197.html). Today’s
common understanding of cloud computing retains the original intent. It was a
mere decade later when a real-world instantiation of the cloud came into existence
as Amazon repurposed its latent e-commerce resources and went into the business of
providing cloud services. From there, it was only a matter of a few months until the
term became commonplace in our collective consciousness and, as figure 1.3 shows,
in our Google search requests (they’re the same thing in today’s world, right?).

1.3.1 Origin of the “cloud ” metaphor

One common question people ask is, “Where did the term cloud come from?” The an-
swer is that for over a decade, whenever people drew pictures of application architec-
tures that involved the internet, they inevitably represented the internet with a cloud,
as shown in figure 1.4.

The cloud in the diagram is meant to convey that anonymous people are sitting at
browsers accessing the internet, and somehow their browser visits a site and begins to

http://www.nationalcybersecurity.com
http://ccs.mit.edu/papers/CCSWP197/CCSWP197.html

access its infrastructure and applications. From “somewhere out there” you get visitors
who can become users who may buy products or services from you. Unlike internal
customers to whom you may provide IT applications and services, this constituency
exists “somewhere else,” outside of your firewall, and hence outside of your domain of
control. The image of a cloud is merely a way to represent this vast potential base of
anonymous users coming from the internet.

Evolution of IT leading to cloud computing 9

Figure 1.3 Cloud computing as a concept entered our collective
consciousness in mid-2007. This figure shows the rapid rise in popularity of
the search term cloud computing as measured by Google. The labels
correspond to major cloud announcements. A: Microsoft announces it
will rent cloud computing space; B: Philadelphia Inquirer reports,
“Microsoft’s cloud computing system grow is growing up”; C: Winnipeg
Free Press reports, “Google looks to be cloud-computing rainmaker.”
Source: Google Trends (www.google.com/trends), on the term cloud
computing.

Load balancing

Major ISP

Internet

Web servers

App servers

Database servers

Storage

Figure 1.4 A picture of a cloud is a ubiquitous representation of the internet and is used almost
universally in discussions or drawings of computer architecture.

http://www.google.com/trends

10 CHAPTER 1 What is cloud computing?

Those users must log in from a PC to access the internet. Technically, each one needs
an Internet Service Provider (ISP) that may be a telecom company, their employer,
or a dedicated internet access company (such as AOL). Each ISP needs a bank of ma-
chines that people can access and that in turn has access to the internet.

Simply put, the earliest concept of the cloud consisted of large aggregations of
computers with access to the internet, accessed by people through their browsers.
The concept has remained surprisingly true to that early vision but has evolved and
matured in important ways. We’ll explore those ways in detail in this book.

1.3.2 Major computing paradigm shifts : mainframes to client-server to web

In the 1960s, we saw the development of the first commercial mainframes . In the be-
ginning, these were single-user systems, but they evolved in the 1970s to systems that
were time-shared . In this model, the large computing resource was virtualized , and a
virtual machine was allocated to individual users who were sharing the system (but to
each, it seemed that they had an entire dedicated machine).

Virtual instances were accessed in a thin-client model by green-screen terminals.
This mode of access can be seen as a direct analog of the concept of virtualized
instances in the cloud, although then a single machine was divided among users. In
the cloud, it’s potentially many thousands of machines. The scarcity of the computing
resource in the past drove the virtualization of that resource so that it could be
shared, whereas now, the desire to fully utilize physical compute resources is driving
cloud virtualization.

As we evolved and entered the client-server era, the primacy of the mainframe as
the computing center of the universe dissolved. As computing power increased, work
gradually shifted away from centralized computing resources toward increasingly
powerful distributed systems. In the era of the PC-based desktop applications, this shift
was nearly complete: computing resources for many everyday computing tasks moved
to the desktop and became thick client applications (such as Microsoft Office). The
mainframe retained its primacy only for corporate or department-wide applications,
relegating it to this role alone.

The standardization of networking technology simplified the ability to connect
systems as TCP/IP became the protocol of the burgeoning internet in the 1980s. The
ascendancy of the web and HTTP in the late 1990s swung the pendulum back to a
world where the thin-client model reigned supreme. The world was now positioned
to move into the era of cloud computing . The biggest stages of the evolution of IT are
diagrammed vertically in a timeline in figure 1.5.

The computing evolution we are still in the midst of has had many stages. Platform
shifts like mainframe to client-server and then client-server to web were one dimension
of the evolution. One that may be less apparent but that is having as profound an
impact is the evolution of the data center and how physical computing resources are
housed, powered, maintained, and upgraded.

Origin of “virtual machine” concept
Mainframe computing costly, so one user’s
idle time used to service other users

IT gets re-invented
Client-server model splits tasks between client
systems initiating requests and server
systems responding over a computer network

Early concepts of “utility” computing
Large arrays of commodity hardware
harnessed for big compute tasks.
Complex applications begin to be accessed
over the internet via web browsers

Utility model reborn
Utility data center resources made available in
on-demand model as a service accessible via
a browser on the internet

2005+:
The cloud

2000s:
Grids & SaaS

1990s:
Client-server

1960s-1980s:
Time-sharing

Figure 1.5 Cloud computing is best understood as an evolutionary change.
The key elements and concepts of cloud computing emerged gradually over
several decades through the various predominant computing paradigms.

1.3.3 Housing of physical computing resources: data center evolution

Over the past four decades, there have been tremendous changes in hardware capa-
bilities, specifically in computing power and storage. The ability to quickly process
prodigious amounts of data on inexpensive and mass-produced commodity servers
means that a few inexpensive racks of servers can handle problems that were tackled
on NSA-sized budgets as recently as the early 1990s.

One measure of the progress in computational power is the cost in Floating Point
Operations Per Second, or FLOPS . FLOPS are simple mathematical operations (such
as addition, multiplication, and division) that can be performed in a single operation
by a computer. Comparing the number of operations that two computers can perform
in one second allows for a rough measure of their computational strength. In 1976,
the state-of-the-art Cray-1 was capable of delivering roughly 150 million FLOPS
(megaFLOPS) at the price point of $5 million, or over $33,000/MegaFLOPS. A typical
quad-core-processor-based PC today can be purchased for under $1,000 and can perform
50 GigaFLOPS (billion FLOPS), which comes out to about $0.02/MegaFLOPS.

Similarly, the cost of storage has decreased dramatically over the last few decades as
the capacity to store data has kept pace with the ability to produce terabytes of digital
content in the form of high-definition HD video and high-resolution imagery. In the

Evolution of IT leading to cloud computing 11

12 CHAPTER 1 What is cloud computing?

early 1980s, disk space costs exceeded $200/MB; today, this cost has come down to
under $0.01/MB.

Network technologies have advanced as well, with modern bandwidth rates in the
100–1000 Gbps range commonplace in data centers today. As for WAN, the turn of the
millennium saw a massive build-out of dark fiber, bringing high-speed broadband to
most urban areas. More rural areas have satellite coverage, and on-the-go, high-speed
wireless networks mean almost ubiquitous broadband connectivity to the grid.

To support the cloud, a huge data-center build-out is now underway. Google ,
Microsoft , Yahoo! , Expedia , Amazon , and others are deploying massive data centers.
These are the engine rooms that power the cloud, and they now account for more than
1.2 percent of the U.S.’s total electricity usage (including cooling and auxiliaries),2
which doubled over the period from 2000 to 2005. We’ll present the economies of
scale and much more detail about how these mega data centers are shaping up in
chapter 2.

1.3.4 Software componentization and remote access: SOA, virtualization, and SaaS

On the software side of the cloud evolution are three important threads of develop-
ment: virtualization, SOA, and SaaS. Two of these are technological, and the third
relates to the business model.

The first important thread is virtualization . As discussed previously, virtualization
isn’t a new concept, and it existed in mainframe environments. The new innovation
that took place in the late 1990s was the extension of this idea to commodity hardware.
Virtualization as pioneered by VMware and others took advantage of the capacity of
modern multicore CPUs and made it possible to partition and time-slice the operation
of commodity servers. Large server farms based on these commodity servers were
partitioned for use across large populations of users.

SOA is the second software concept necessary for cloud computing. We see SOA as
the logical extension of browser-based standardization applied to machine-to-machine
communication. Things that humans did through browsers that interacted with a web
server are now done machine-to-machine using the same web-based standard protocols
and are called SOA. SOA makes practical the componentization and composition
of services into applications, and hence it can serve as the architectural model for
building composite applications running on multiple virtualized instances.

The final software evolution we consider most pertinent to the cloud is SaaS . Instead
of being a technological innovation, this is a business model innovation. Historically,
enterprise software was sold predominantly in a perpetual license model. In this model,
a customer purchased the right to use a certain software application in perpetuity for
a fixed, and in many cases high, price. In subsequent years, they paid for support and
maintenance at typically around 18 percent of the original price. This entitled the

2 Jonathan G. Koomey, Ph.D. (www.koomey.com), Lawrence Berkeley National Laboratory & Stanford
University.

http://www.koomey.com

Classifying cloud layers: different types for different uses 13

customer to upgrades of the software and help when they ran into difficulty. In the
SaaS model, you don’t purchase the software—you rent it. Typically, the fee scales
with the amount of use, so the value derived from the software is proportional to the
amount spent on it. The customer buys access to the software for a specified term,
which may be days, weeks, months, or years, and can elect to stop paying when they no
longer need the SaaS offering. Cloud computing service providers have adopted this
pay-as-you-go or on-demand model.

This brings up an important point we need to consider next. SaaS is one flavor or
layer in a stack of cloud types. A common mistake people make in these early days of
the cloud is to make an apples-to-oranges comparison of one type of cloud to another.
To avoid that, the next section will classify the different layers in the cloud stack and
how they compare and contrast.

1.4 Classifying cloud layers: different types for different uses
First, let’s learn a little more about how SaaS evolved and established itself, to set the
context for discussing the other classes of clouds.

In the earliest days of commercially practicable computing, computer resources
were scarce, and the primary model for their use was much like a utility. But this was
different from the sense of utility that cloud computing offers today; it was more akin
to the community well in a village during a drought. Members of the community had
access to and were allocated a fixed amount of water. In the case of cloud computing
today, we’ve returned to the notion of computing being available as a utility, but
without the scarcity.

The cloud movement was presaged by the shift in business model toward SaaS that
took over the software industry at the turn of the century. Before it was called SaaS,
it was an application rented from an Application Service Provider (ASP); here, the
traditional enterprise license model was turned on its head, and you purchased in
a pay-as-you-go manner, with costs scaling with usage instead of having a large up-
front capital investment . You didn’t need to provision hardware and software; instead,
the services were turned on when needed. After this approach was renamed SaaS, it
evolved into several new kinds of offerings that we’ll explore next.

We can classify cloud computing several ways. In this book, we present a taxonomy
where cloud services are described generically as “X as a Service ,” where X can take on
values such as Hardware, Infrastructure, Platform, Framework, Application, and even
Datacenter. Vendors aren’t in agreement about what these designations mean, nor are
they consistent in describing themselves as belonging to these categories. Despite this,
we’ll reproduce one interesting hierarchy that illustrates the use of these terms, with
representative vendors (some at this point only historical) populating the diagram in
figure 1.6.

A more simplified representation of the cloud types shown in figure 1.7 highlights
important aspects and key characteristics of different kinds of cloud offerings.

14 CHAPTER 1 What is cloud computing?

Amazon EC2
Amazon S3

Amazon SimpleDB

Google BigTable

Microsoft SQL Data Services

Rackspace Mosso CloudFS

Amazon SQS

Appian Anywhere

Appirio Cloud Connectors

Boomi

Bungee Labs Connect

Castiron

gnip

Itensil

Microsoft BizTalk Services

OpSource Connect

SnapLogic SaaS Solution Packs

Aria

eVapt

IP Applications

OpSource Billing

Vindicia

Zuora

enStratus

OpenID/OAuth

Ping Identity

Enablers

Applications

Security

Billing

Integration

Storage

Fabric Mgmt

System Integrators

Symplified

3 Tera AppLogic

Appistry CloudIQ

Cloudkick

Elastra Cloud Server

Hyperic CloudStatus

Kaavo IMOD

Rightscale

Scalr

Concur

Google Apps

Netsuite

Salesforce.com

Taleo

Offered under the Creative Commons Attribution-
Share Alike 3.0 United States License

(and thousands of others)

(not covered)

Public Clouds

Flexiscale

Joyent Accelerators

Microsoft Azure

Rackspace Mosso Cloud

ServePath GoGrid

Skytap

Sun Microsystems Cloud

Eucalyptus

Enomaly Enomalism

Nimbus

10gen Babble

Hardware

Private Cloud

Cassatt*

CloudEra

CycleCloud

Globus

Hadoop

Terracotta

Gemstone Gemfire

GigaSpaces Data Grid

IBM eXtreme Scale

Oracle Coherence

CohesiveFT

Compute Grids

Infrastructure

Data Grids

Virtual Appliances

Virtualization

rPath

Caspio

Biz User Platforms

Intuit Quickbase

PerfectForms

Rollbase

WorkXpress

Apprenda SaaSGrid

Infrastructure

Platform

Services

Applications

Aptana CloudStudio

Bungee Labs Connect

Google App Engine

Heroku

LongJump

Morph Labs

Salesforce.com force.com

Dev Platforms

Stax

Author: Peter Laird

(not covered)

(not covered)

q

r

q

q

q

r

Figure 1.6 Cloud technologies are evolving as various vendors attempt to provide services populating the
cloud ecosystem. These services run the gamut from the hardware systems used to build cloud infrastructure to
integration services and cloud-based applications. Source: Peter Laird, http://peterlaird.blogspot.com.

http://peterlaird.blogspot.com

What does XaaS mean generically? It means on demand, requiring little or no capital
expenditure. It means consumable remotely and across any mode of access over the
internet, and in a metered billing model. Let’s now go through the boxes representing
the different classes of clouds in figure 1.7. First up is IaaS.

1.4.1 Infrastructure as a Service (IaaS)

The lowest level of XaaS is known as IaaS, or sometimes as Hardware as a Service
(HaaS). A good example of IaaS is the Amazon Elastic Compute Cloud (EC2).

A user of IaaS is operating at the lowest level of granularity available and with the
least amount of prepackaged functionality. An IaaS provider supplies virtual machine
images of different operating system flavors. These images can be tailored by the
developer to run any custom or packaged application. These applications can run
natively on the chosen OS and can be saved for a particular purpose. The user can
bring online and use instances of these virtual machine images when needed. Use of
these images is typically metered and charged in hour-long increments.

Storage and bandwidth are also consumable commodities in an IaaS environment,
with storage typically charged per gigabyte per month and bandwidth charged for
transit into and out of the system.

IaaS provides great flexibility and control over the cloud resources being consumed,
but typically more work is required of the developer to operate effectively in the
environment. In chapter 2, we’ll delve into IaaS and see how it works in greater detail.

Classifying cloud layers: different types for different uses 15

Cloud Computing: “Everything as a Service”

Cloud
Enablement

Infrastructure
and utilities that
provide the glue

necessary to
run the system

Framework as a Service
(FaaS)

Environment for building a
module for an ERP system

Software as a Service
(SaaS)

Packaged software
application

Infrastructure as a Service
(laaS)

Environment for building a native application

Platform as a Service
(PaaS)

Environment for building a managed application with an
IDE with a rich class library that executes

in a runtime container

Figure 1.7 In the X-as-a-Service taxonomy, cloud services are classified
by the level of prepackaging offered to the consumer of the specific
service. An IaaS provides computing capabilities in the rawest form
and hence offers the greatest flexibility. At the highest layers,
there is less flexibility but also less complexity to be managed.

16 CHAPTER 1 What is cloud computing?

1.4.2 Platform as a Service (PaaS)

PaaS’s fundamental billing quantities are somewhat similar to those of IaaS: consump-
tion of CPU, bandwidth, and storage operates under similar models. Examples of PaaS
include Google AppEngine and Microsoft Azure . The main difference is that PaaS
requires less interaction with the bare metal of the system. You don’t need to directly
interact with or administer the virtual OSs. Instead, you can let the platform abstract
away that interaction and concentrate specifically on writing the application. This sim-
plification generally comes at the cost of less flexibility and the requirement to code in
the specific languages supported by the particular PaaS provider.

1.4.3 Software as a Service (SaaS) and Framework as a Service (FaaS)

SaaS, as described earlier in the chapter, refers to services and applications that are
available on an on-demand basis. Salesforce.com is an example. FaaS is an environ-
ment adjunct to a SaaS offering and allows developers to extend the prebuilt func-
tionality of the SaaS applications. Force.com is an example of a FaaS that extends the
Salesforce.com SaaS offering.

FaaS offerings are useful specifically for augmenting and enhancing the capabilities
of the base SaaS system. You can use FaaS for creating either custom, specialized
applications for a specific organization, or general-purpose applications that can
be made available to any customer of the SaaS offering. Like a PaaS environment, a
developer in a FaaS environment can only use the specific languages and APIs provided
by the FaaS.

1.4.4 Private clouds as precursors of public clouds

In addition to the classifications we discussed earlier, we should introduce some im-
portant concepts relative to the different classifications of clouds. Private clouds are a
variant of generic cloud computing where internal data-center resources of an enter-
prise or organization aren’t made available to the general public—that is, these pooled
computing resources are actually not available to any subscribing users but are instead
controlled by an organization for the benefit of other members of that organization.
The public clouds of providers such as Amazon and Google were originally used as pri-
vate clouds by those companies for other lines of business (book retailing and internet
search, respectively).

If an organization has sufficient users and enough overall capacity, a private cloud
implementation can behave much like a public cloud, albeit on a reduced scale. There
has been a tremendous amount of capital investment in data-center resources over the
past decade, and one of the important movements is the reorienting of these assets
toward cloud-usage models.

Hybrid clouds combine private and public clouds. You can use them in cases where
the capacity of a private cloud is exhausted and excess capacity needs to be provisioned
elsewhere.

 Summary 17

1.5 Summary
The cloud offers the illusion of infinite resources, available on demand. You no longer
need to play the guessing game of how many users need to be supported and how
scalable the application is. The cloud takes care of the peaks and troughs of utilization
times. In the world of the cloud, you pay for only the resources you use, when you use
them. This is the revolutionary change: the ability to handle scale without paying a
premium. In this realm of true utility computing, resource utilization mirrors the way
we consume electricity or water.

In this chapter, we defined the cloud as computing services that are offered by a third
party, are available for use when needed, and can be scaled dynamically in response
to changing need. We then touched briefly on the evolution of computing and the
developments that led to where we are today. Finally, we looked at a simple cloud
classification that should help you understand the various flavors of cloud offerings
that are available in the market today and should prevent you from making apples-and-
oranges comparisons between incompatible classes of clouds.

As we delve deeper in the next chapter and look at how the cloud works, you’ll
gain a better understanding of these types of clouds and when it makes sense to use
each kind.

2

18

Understanding cloud
computing classifications

This chapter covers
■ Necessary technological underpinnings common

to all cloud types

■ Classifying the types of clouds and
their capabilities

■ Choosing the appropriate type of cloud and the
best provider for it

Now that we’ve set the stage for an understanding of what cloud computing is, we
can look under the hood and help you understand the different types or classifica-
tions of clouds and how they work. Keeping with the under-the-hood analogy, with
cloud computing as our vehicle, the modern data center will serve as the engine and
virtualization as the vehicle’s suspension smoothing out the road. The cloud’s API is
similar to the dashboard and controls of the vehicle, allowing you to drive it; cloud
storage is similar to the trunk, allowing you to transport things; cloud databases are
the navigation system (specific information) you need for the trip; and elasticity is
the vehicle’s transmission that allows the engine’s speed to be translated into low- or
high-vehicle speeds, which is analogous to allowing your application to support one

The technological underpinnings of cloud computing 19

user and suddenly expand when it needs to support one million. Similar to the variety
of vehicles available, there are a wide variety of cloud types. We’ll examine the major
ones in existence today. Do you need a racing car because you require the speed, or do
you need a giant 18-wheeler because of its space capacity?

Let’s begin by looking at the six most critical technological underpinnings of the
cloud to understand what it’s made of. We’ll expand on our initial discussion from
chapter 1 of the different types of clouds and how they compare and contrast with each
other. This will prepare you to make better decisions about which type of cloud you
need and how to make best use of it.

2.1 The technological underpinnings of cloud computing
Either through curiosity or because it makes us better drivers and owners, most of us learn
the basics of how their car works. Similarly, let’s learn about the basic technologies and
infrastructure needed to build a cloud, regardless of type, to understand its workings:

■ A cloud needs servers on a network, and they need a home. That physical home and
all the gear in it make up a data center .

■ A cloud’s servers need to be virtualized . This is in order to use a large bank of serv-
ers effectively. Otherwise, the economics of a huge number of servers won’t al-
low the cloud to be cost effective.

■ A cloud needs an access API. Without an access API, the virtualized servers in the
cloud would be quiet and lonely. Cloud users need a way to access the cloud,
provision new virtual servers, get data in and out of storage, start and stop appli-
cations on those servers, and decommission servers that are no longer needed.
All this needs to be possible remotely, because cloud users never set foot inside
the data center.

■ A cloud needs some storage. It needs to store virtual machine images, users’
applications, and persistent data needed by those applications.

■ Cloud applications need a database. Most applications also need structured data
during execution. Consequently, the cloud needs some sort of database.

■ A cloud needs elasticity as a way to expand and contract applications. A cloud must
be dynamically scalable. One of the chief attractions of cloud computing is the
ability to have applications that can scale up or down as per the demand the ap-
plication receives.

In the following six subsections, we’ll tackle each of the aforementioned aspects of
technology and infrastructure that together form the technological underpinnings of
cloud computing.

2.1.1 Achieving high economies of scale with cloud data centers

Revisiting the vehicle analogy, the data center is the car’s engine. A data center—one
that you might find in any large company—is a facility (usually secure) to house a
large collection of computers, networking, and communications equipment. But the

20 CHAPTER 2 Understanding cloud computing classifications

large internet-based companies, such as Amazon , Yahoo! , Google , Intuit , Apple , and
others have, over the years, built up what have to be considered mega data center s with
thousands of servers. These data centers are the starting point for what is being built
out by the cloud providers.

It’s useful to understand the structure and the economics of these massive data
centers to gauge how much you can scale your operations, how reliable your cloud
computing will be, how secure your data will be, and where the economics of public
clouds are going. This is particularly important should you decide to build your own
private cloud . You’ll learn more about private clouds later in this chapter, and we’ve
dedicated chapter 4 to the topics of security and private clouds.

THE STRUCTURE OF A DATA CENTER

A data center can occupy one room of a building, one or more floors, or an entire
building. Most of the equipment is often in the form of servers mounted in 19-inch
rack cabinets, which are usually placed in single rows with corridors between them.
This allows people access to the front and rear of each cabinet. Servers differ greatly
in size, from 1U server s (which occupy one of 42 slots in a standard rack) to large free-
standing storage silos that occupy many tiles on the floor. Mainframe computers and
storage devices may be as big as the racks themselves and are placed alongside them.
Large data centers may use shipping containers packed with 1,000 or more servers
each; when they need to repair or upgrade, they replace the whole container (rather
than repairing individual servers).

Clean, unwavering power—and lots of it—is essential. Data centers need to keep
their computers running at all times. They should be prepared to handle brownouts
and even power outages . The power must be conditioned, and backup batteries and
diesel generators must be available to keep power flowing no matter what.

As you can imagine, all that power generates a lot of heat. Data center s must cool
their racks of equipment. The most common mode of cooling is air-conditioning; water-
cooling is also an option when it’s easily available, such as at some of the new data centers
along the Columbia River in Washington State. Air-conditioning not only cools the
environment but also controls humidity to avoid condensation or static electric buildup.

Network connectivity and ample bandwidth to and from the network backbones are
vital, to handle the input and output from the entire collection of servers and storage
units. All these servers will be idle if no one can access them.

Another important aspect is physical and logical security . Bigger data centers are
targets for hackers all over the world. Some freestanding data centers begin with security
through obscurity and disguise the fact that a data center even exists at that location.
Guards, mantraps, and state-of-the-art authentication technology keep unauthorized
people from physically entering. Firewalls, VPN gateways, intrusion-detection software,
and so on keep unauthorized people from entering over the network. (More on all
aspects of cloud security in chapter 4.)

Finally, data centers must always assume the worst and have disaster recovery
contingencies in place that avoid loss of data and experience the minimum loss of
service in case of disaster.

The technological underpinnings of cloud computing 21

DATA CENTERS: SCALING FOR THE CLOUD

A traditional, large data center dedicated to a single large corporation costs approxi-
mately $100-200 million.1 Contrast that to the total cost of building the largest mega
data centers that provide cloud services: $500 million or more.2,3 What is going into
that much higher cost, and what can the biggest cloud data centers do that normal
companies can’t do with their dedicated data centers?

The largest data-center operators like Google, Amazon, and Microsoft situate
their data centers in geographic proximity to heavy usage areas to keep network
latency to a minimum and to provide failover options. They also choose geographies
with access to cheap power. The northwest is particularly advantageous because the
available hydropower is the cheapest power in the country and air-conditioning
needs are low to zero. Major data centers can use a whopping amount of wattage
and cost their owners upward of $30 million a year for electricity alone, which is
why data-center power consumption across the U.S. represents 1.2 percent of total
power consumption in the country—and it’s rising. The positive side is that cloud
data centers use so much power and have so much clout that they can negotiate huge
power volume discounts.

Additionally, these giant data center s tend to buy so much hardware that they can
negotiate huge volume discounts far beyond the reach of even the largest company
that’s building a dedicated data center. For example, Amazon spent about $90 million
for 50,000 servers from Rackable/SGI in 2008,4 which, without the massive volume
discounts, would have cost $215 million.

Servers dominate data-center costs. This is why Google and others are trying
to get cheaper servers and have taken to building their own from components.
Google relies on cheap computers with conventional multicore processors. A single
Google data center has tens of thousands of these inexpensive processors and
disks, held together with Velcro tape in a practice that makes for easy swapping of
components.

To reduce the machines’ energy appetite, Google fitted them with high-efficiency
power supplies and voltage regulators, variable-speed fans, and system boards stripped
of all unnecessary components, such as graphics chips. Google has also experimented
with a CPU power-management feature called dynamic voltage/frequency scaling . It
reduces a processor’s voltage or frequency during certain periods (for example, when
you don’t need the results of a computing task right away). The server executes its
work more slowly, reducing power consumption. Google engineers have reported
energy savings of around 20 percent on some of their tests.

In 2006, Google built two cloud computing data center s in Dalles, Oregon, each
of which has the acreage of a football field with four floors and two four-story cooling

1 http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx
2 http://www.datacenterknowledge.com/archives/2007/11/05/microsoft-plans-500m-illinois-data-center
3 http://www.theregister.co.uk/2009/09/25/microsoft_chillerless_data_center
4 http://www.datacenterknowledge.com/archives/2009/06/23/amazon-adds-cloud-data-center-in-virginia

http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx
http://www.datacenterknowledge.com/archives/2007/11/05/microsoft-plans-500m-illinois-data-center
http://www.theregister.co.uk/2009/09/25/microsoft_chillerless_data_center
http://www.datacenterknowledge.com/archives/2009/06/23/amazon-adds-cloud-data-center-in-virginia

22 CHAPTER 2 Understanding cloud computing classifications

plants (see figure 2.1). The Dalles Dam is strategic for the significant energy and cooling
needs of these data centers. (Some new cloud data center s rely on cooling towers,
which use evaporation to remove heat from the cooling water, instead of traditional
energy-intensive chillers.)

The Dalles data center also benefits from good fiber connectivity to various locations
in the U.S., Asia, and Europe, thanks to a large surplus of fiber optic networking, a
legacy of the dot-com boom.

In 2007, Google built at least four new data centers at an average cost of $600 million,
each adding to its Googleplex : a massive global computer network estimated to span
25 locations and 450,000 servers. Amazon also chose a Dalles location down the river for
its largest data center .

Yahoo! and Microsoft chose Quincy, Washington . Microsoft’s new facility there
has more than 477,000 square feet of space, nearly the area of 10 football fields. The
company is tight-lipped about the number of servers at the site, but it does say the
facility uses 3 miles of chiller piping, 600 miles of electrical wire, 1 million square feet
of drywall, and 1.6 tons of batteries for backup power. And the data center consumes
48 megawatts—enough power for 40,000 homes.

World’s servers surpassing Holland’s emissions
The management consulting firm McKinsey & Co. reports that the world’s 44 million
servers consume 0.5 percent of all electricity and produce 0.2 percent of all carbon
dioxide emissions, or 80 megatons a year, approaching the emissions of entire
countries such as Argentina or the Netherlands.

Figure 2.1 Photograph of Google’s top-secret Dalles, OR data center, built near the Dalles Dam for
access to cheap power. Note the large cooling towers on the end of each football-sized building on
the left. These towers cool through evaporation rather than using more power-hungry chillers.
Source: Melanie Conner, New York Times.

The technological underpinnings of cloud computing 23

CLOUD DATA CENTERS: BECOMING MORE EFFICIENT AND MORE FLEXIBLE THROUGH MODULARITY

Already, through volume purchasing, custom server construction, and careful geo-
graphic locality, the world’s largest data-center owners can build data centers at a
fraction of the cost per CPU operation of private corporations. They relentlessly work
to widen that gap. The economies-of-scale trend will continue in the cloud providers’
favor as they become dramatically more efficient through modular data centers. These
highly modular, scalable, efficient, just-in-time data centers can provide capacity that
can be delivered anywhere in the world quickly and cheaply.

Figure 2.2 is an artist’s rendering of a modular data center (because photographs
of such facilities are highly guarded). Corporate data centers can’t compete with the
myriad economic efficiencies that these mega data centers can achieve today and will
fall further and further behind as time goes by.

The goal behind modular data center s is to standardize them and move away from
custom designs, enabling a commoditized manufacturing approach. The most striking
feature is that such data centers are roofless.

Like Google, Microsoft is driven by energy costs and environmental pressures
to reduce emissions and increase efficiency. The company’s goal is a power usage
effectiveness (PUE) at or below 1.125 by 2012 across all its data centers.

COOLING: High-efficiency water-based
cooling systems–less energy-intensive
than traditional chillers–circulate cold
water through the containers to remove
heat, eliminating the need for
air-conditioned rooms.

Truck
carrying
container

Racks of
servers Power

supply

Water-based
cooling system

Power and water
distribution

CONTAINER: Each 67.5-
cubic-meter container houses
2500 servers about 10 times
as many as conventional
data centers pack in
the same space. Each
container integrates
computing, networking,
power, and cooling systems.

STRUCTURE: A 24 000-square-meter
facility houses 400 containers. Delivered
by trucks, the containers attach to a spine
infrastructure that feeds network connectivity,
power, and water. The data center has no
conventional raised floors.

POWER: Two power
substations feed a total of
300 megawatts to the data
center, with 200 MW used
for computing equipment and
100 MW for cooling and electrical
losses. Batteries and generators
provide backup power.

Figure 2.2 Expandable, modular cloud data center. Notice there is no roof. New containers with
servers, power, cooling and network taps can be swapped in and out as needed. Source: IEEE
Spectrum magazine.

24 CHAPTER 2 Understanding cloud computing classifications

Power usage effectiveness (PUE)
Power usage effectiveness (PUE) is a metric used to determine the energy efficiency
of a data center . PUE is determined by dividing the amount of power entering a
data center by the power used to run the computer infrastructure within it. PUE
is therefore expressed as a ratio, with overall efficiency improving as the quotient
decreases toward 1.

According to the Uptime Institute , the typical data center has an average PUE of 2.5.
This means that for every 2.5 watts in at the utility meter, only 1 watt is delivered
out to the IT load. Uptime estimates that most facilities could achieve 1.6 PUE using
the most efficient equipment and best practices. Google and Microsoft are both
approaching 1.125, far exceeding what any corporate or cohost data center can
achieve.

2.1.2 Ensuring high server utilization in the cloud with virtualization

Virtualization, following the car analogy, is the suspension. It provides the high server
utilization you need. It smoothes out the variations between applications that need
barely any CPU time (they can share a CPU with other applications) and those that are
compute intensive and need every CPU cycle they can get. Virtualization is the single-
most revolutionary cloud technology whose broad acceptance and deployment truly
enabled the cloud computing trend to begin. Without virtualization, and the 60-plus
percent server utilization it allows, the economics of the cloud would not work.

VIRTUALIZATION For this book, we’re interested primarily in platform
virtualization . Platform virtualization is a technique to abstract computer
resources such that it separates the operating system from the underlying
physical server resources. Instead of the OS running on (that is, directly
using) hardware resources. The OS interacts instead with a new software layer
called a virtual machine monitor that accesses the hardware and presents the OS
with a virtual set of hardware resources. This means multiple virtual machine
images or instances can run on a single physical server, and new instances can
be generated and run on demand, creating the basis for elastic computing
resources.

As we discussed earlier, virtualization isn’t new at all. IBM mainframes used time-sharing
virtualization in the ’60s to enable many people to share a large computer without
interacting or interfering with each other. Previously, constraints of scheduling dedi-
cated time on these machines required you to get all your work for the day done in
that scheduled time slot. The concept of virtual memory , introduced around 1962,
although considered pretty radical, ultimately freed programmers from having to con-
stantly worry about how close they were to the limits of physical memory. Today, server
virtualization is proving equally dramatic for application deployment and scaling . And
it’s the key enabler for the cloud. How did this happen?

The technological underpinnings of cloud computing 25

The average server in a corporate data center has typical utilization of only
6 percent.5 Even at peak load, utilization is no better than 20 percent. In the best-
run data centers, servers only run on average at 15 percent or less of their maximum
capacity. But when these same data centers fully adopt server virtualization, their CPU
utilization increases to 65 percent or higher. For this reason, in a few short years, most
corporate data centers have deployed hundreds or thousands of virtual servers in place
of their previous model of one server on one hardware computer box. Let’s see how
server virtualization works to make utilization jump this dramatically.

HOW IT WORKS

Server virtualization transforms or virtualizes the hardware resources of a computer—
including the CPU, RAM, hard disk, and network controller—to create a fully func-
tional virtual machine that can run its own operating system and applications like a
physical computer. This is accomplished by inserting a thin layer of software directly on
the computer hardware that contains a virtual machine monitor (VMM)—also called
a hypervisor —that allocates hardware resources dynamically and transparently. Multiple
guest operating system s run concurrently on a single physical computer and share
hardware resources with each other. By encapsulating an entire machine, including
CPU, memory, operating system, and network devices, a virtual machine becomes com-
pletely compatible with all standard operating systems, applications, and device drivers.
You can see the virtual machine architecture for VMware on the x86 in figure 2.3.

5 McKinsey & Company, 2008 Data Center Efficiency report.

Figure 2.3 Virtual machine
architecture using VMware as an
example. The virtualization layer
is what interfaces directly with all
hardware components, including
the CPU. That layer then presents
each guest operating system with
its own array of virtual hardware
resources. The guest OS doesn’t
operate differently than it would if
installed on the bare hardware, but
now several instances of guest OSs
with all their applications can share
a single physical device and have
higher effective utilization. Source:
VMWare.

26 CHAPTER 2 Understanding cloud computing classifications

VIRTUALIZATION AS APPLIED TO THE CLOUD

When virtualization passed muster with enterprise architects and CIOs, it had arrived.
It was all about saving money. Enterprises began seeing utilization of their hardware as-
sets increase dramatically. It was easy to go from the typical 5 or 6 percent to 20 percent.
They could get 65 percent utilization or better with good planning.

In addition to increased utilization and the associated cost savings, virtualization in
corporate data centers set the stage for cloud computing in several interesting ways. It
decoupled users from implementation; it brought speed, flexibility, and agility never
before seen in corporate data centers; and it broke the old model of software pricing
and licensing. Let’s look at table 2.1 for more clarity.

Table 2.1 Impact of virtualization on corporate data centers

Benefit Explanation

Decouples users from implementation The concept of a virtual server forces users to not worry
about the physical servers or their location. Instead, they
focus on service-level agreement s and their applications.

Decreases server provisioning from
months to minutes

Getting a (physical) server requisitioned, installed,
configured, and deployed takes larger organizations
60–90 days and some 120 days. In the virtual server
model, it’s literally minutes or hours from request to fully
ready for application deployment, depending on how much
automation has been put in place.

Breaks software pricing and licensing No longer can the data center charge for an entire server
or every server the software runs on. Instead, they have to
charge for actual usage—a whole new model for IT.

Table 2.1 illustrates the services the cloud providers offer. We also see a growing recog-
nition of and readiness for the cloud within the enterprise. This is because the model
change that virtualization has already brought to enterprise IT has prepared compa-
nies to adapt more easily to the cloud computing model.

Let’s look at a scenario that uses thousands of physical servers. Each one is virtualized
and can run any number of guest OSs, can be configured and deployed in minutes,
and is set up to bill by the CPU hour. The combination of cheap, abundant hardware
and virtualization capability, coupled with automated provisioning and billing allows
the huge economies of scale now achievable in the mega data center s to be harnessed
through cloud computing. This is possible because of virtualization, much as car
suspension systems enable vehicles to speed up without killing the occupants at every
bump in the road.

But a powerful engine (data center) and a smooth suspension (virtualization) aren’t
enough. Following the vehicle analogy, you need a set of controls to start, stop, and
steer the car; you need an API to control your cloud.

The technological underpinnings of cloud computing 27

2.1.3 Controlling remote servers with a cloud API

The API is to a cloud what the dashboard and controls are to a car. You have tremen-
dous power under that hood, but you need the dials and readouts to know what the
vehicle is doing. You need the steering wheel, accelerator, and brake to control it.
Remember, you’d never drive fast if you didn’t have good brakes.

When you have a cloud, you need a way to access it. The highest-level clouds—
those offering Software as a Service (SaaS) applications—offer a browser-based web
interface . Lower-level clouds—those offering Infrastructure as a Service (IaaS)—also
need a way to access applications. Each type of cloud must provide some kind of API
that can be used to provision resource s, configure and control them, and release them
when they’re no longer needed.

An API is necessary to engage the service of a cloud provider. It’s a way for the
vendor to expose service features and potentially enable competitive differentiation.
For example, Amazon’s EC2 API is a SOAP- and HTTP Query-based API used to send
proprietary commands to create, store, provision, and manage Amazon Machine
Images (AMIs). Sun’s Project Kenai Cloud API specification is a Representational
State Transfer (REST)-ful API for creating and managing cloud resources, including
compute, storage, and networking components.

REST ARCHITECTURE AND RESTFUL APIS Representational State Transfer
(REST) is a style of software architecture for distributed hypermedia systems,
such as the World Wide Web. The REST architectural style was developed
in parallel with the HTTP protocol. The largest-known implementation
of a system conforming to the REST architectural style is the World Wide
Web. In fact, REST can be considered a post hoc description of the features
of the web that made the web successful. REST-style architectures consist
of clients and servers. Client s initiate requests to servers; server s process
requests and return appropriate responses. Requests and responses are
built around the transfer of representations of resources. A resource can be any
coherent and meaningful concept that may be addressed. A representation
of a resource is typically a document that captures the current or intended
state of a resource. Conforming to the REST constraints is referred to as
being RESTful.

Because your cloud applications will be the lifeblood of your company, you’ll want
to ensure that only authorized parties can access your applications. If an appli-
cation was running in your company’s secure data center protected by layers of
physical and logical security you’d be certain that no unauthorized person could ac-
cess it. Here, because everything having to do with your application and the server
it runs on is by definition accessible over the internet, the approach Amazon and
others take to security is to issue X.509 public key pairs initially and then require a
key on every API call. This ensures that the caller has the credentials to access the
infrastructure.

28 CHAPTER 2 Understanding cloud computing classifications

To understand a cloud API—for which there isn’t yet an accepted standard—it’s best
to look at Amazon’s cloud API as the default standard as they’re the leaders. Table 2.2
outlines some of the basic definitions and operations central to the Amazon cloud API.

Table 2.2 Basic terms and operations of the Amazon EC2 API

Term Description

AMI An Amazon Machine Image is an encrypted and signed machine image suitable
to run in a virtual server environment. For example, it may contain Linux, Apache,
MySQL, or PHP, as well as the application of the AMI’s owner.

AMI s can be public (provided by Amazon), private (custom designed by its creator),
paid (purchased from a third party), or shared (created by the community for free).

AMIs can be stored in Amazon’s Simple Storage Service (S3).

Instance The result of launching an AMI is a running system called an instance . When
an instance terminates, the data on that instance vanishes. For all intents and
purposes, an Instance is identical to a traditional host computer.

Standard flow 1. Use a standard AMI by customizing an existing one.

2. Bundle the AMI, and get an AMI ID to enable launching as many instances of
the AMI as needed.

3. Launch one or more instances of this AMI.

4. Administer and use the running instance(s).

Connecting From a web browser, go to http://<hostname>, where <hostname> is your
instance’s public hostname.

If you want to connect to a just-launched public AMI that hasn’t been modified, run
the ec2-get-console-output command.

The result in either case enables you to log in as root and exercise full control over
this instance, just like any host computer you could walk up to in a data center.

We’ve barely scratched the surface of all the concepts and corresponding API calls that
exist in Amazon’s API. Documentation is available at http://docs.amazonwebservices.
com. APIs also cover these areas:

■ Using instance addressing
■

Using regions and availability zones
Using network security

■

■ Using Amazon Elastic Block Store (EBS)
■

Using public data sets
Using auto scaling, elastic load balancing, and Amazon CloudWatch

■

■ Using Amazon’s Virtual Private Cloud

We’ll revisit select aspects of the cloud API at various points throughout the book. Let’s
leave this now and talk about the next important layer in what it takes to set up and use
a cloud: cloud storage.

http://docs.amazonwebservices

The technological underpinnings of cloud computing 29

2.1.4 Saving persistent data in cloud storage

You store your luggage in the trunk of your car. Similarly, the cloud provides a place to
store your machine images, your applications, and any data your applications need.

Cloud storage has also increased in popularity recently for many of the same reasons
as cloud computing. Cloud storage delivers virtualized storage on demand over a network
based on a request for a given quality of service (QoS). Unlike the long provisioning
lead times required in corporate data centers, there is no need to purchase storage
or in some cases even provision it before storing data. Typically, you pay for transit of
data into the cloud and, subsequently, a recurring fee based on the amount of storage
consumption your data uses.

You can use cloud storage in many different ways. For example, you can back up
local data (such as on a laptop) to cloud storage; a virtual disk can be synched to the
cloud and distributed to other computers; and you can use it as an archive to retain
(under some policy) data for regulatory or other purposes.

You can use cloud storage for applications that provide data directly to their clients
via the network. The application redirects the client to a location at the cloud storage
provider for the data. Media such as audio and video files are examples. The network
requirements for streaming data files can be made to scale in order to meet the demand
without affecting the application.

The type of interface used for this is HTTP. You can fetch the file from a browser
without having to do any special coding, and the correct application is invoked
automatically. But how do you get the file there in the first place, and how do you
make sure the storage you use is of the right type and QoS? Again, many offerings
expose an interface for these operations, and it’s not surprising that many of
these interfaces use REST principles. This is typically a data-object interface with
operations for creating, reading, updating, and deleting the individual data objects
via HTTP operations.

A cloud storage standard
The Storage Networking Industry Association has created a technical work group to
address the need for a cloud storage standard. The new Cloud Data Management
Interface (CDMI) enables interoperable cloud storage and data management. In
CDMI, the underlying storage space exposed by the interfaces is abstracted using
the notion of a container . A container is not only a useful abstraction for storage
space, but also serves as a grouping of the data stored in it and a point of control
for applying data services in the aggregate.

Keeping with Amazon’s APIs as good examples to study, we’ve outlined a simple API
dealing with Amazon’s S3 in table 2.3.

30 CHAPTER 2 Understanding cloud computing classifications

Table 2.3 Basic terms and operations of Amazon S3

Terms Description

Object Fundamental entity stored in S3. Each object can range in size from 1 byte to 5 GB.
Each object has object data and metadata . Metadata is a set of name-value pairs
that describe the data.

Bucket Fundamental container in S3 for data storage. Objects are uploaded into bucket s.
There is no limit to the number of objects you can store in a bucket. The bucket
provides a unique namespace for the management of objects contained in the
bucket. Bucket names are global, so each developer can own only up to 100
buckets at a time.

Key A key is the unique identifier for an object within a bucket. A bucket name plus a key
uniquely identifies an object within all of S3.

Usage 1. Create a bucket in which to store your data .

2. Upload (write) data (objects) into the bucket.

3. Download (read) the data stored in the bucket.

4. Delete some data stored in the bucket.

5. List the objects in the bucket.

In many cases, the coarse granularity and unstructured nature of cloud storage services
such as S3 aren’t sufficient for the type of data access required. For many applications,
an alternative structured data-storage method is required. Let’s explore how databases
in the cloud work (and don’t).

2.1.5 Storing your application’s structured data in a cloud database

Your car’s navigation system provides constant updates about your current location
and destination during your journey. It guides you through the route you need to take.
This data, although critical for the trip, isn’t useful afterward. The navigation system is
to the car what a cloud database is to an application running in the cloud: it’s transac-
tional data created and used during the running of that application. When we think of
transactional data stored in databases, we usually think of relational databases.

What is a Relational Database Management System (RDBMS)? Why do we frequently
hear that they don’t work in the cloud? An RDBMS is a database management system
in which you store data in the form of tables; the relationship among the data is also
stored in the form of tables. You can see this in the simple relation in figure 2.4.

RDBMS A database management system (DBMS) based on the relational
model . Relational describes a broad class of database systems that at a
minimum present the data to the user as relations (a presentation in tabular
form—that is, as a collection of tables with each table consisting of a set of
rows and columns—can satisfy this property) and provide relational operators
to manipulate the data in tabular form. All modern commercial relational
databases employ SQL as their query language, leading to a shorthand for
RDBMSs as SQL databases.

The technological underpinnings of cloud computing 31

Figure 2.4 A simple example of how a relational database works. Four tables map out relationships
among the data. Because a separate table lists the car manufacturers and colors, there is no need to
separately list a red Nissan and a blue Nissan. But to fully understand what the car with CarKey 1 is,
you must do a join of the Car, Color, MakeModel, and Make tables.

The challenge for an RDBMS in the cloud is scaling. Applications having a fixed num-
ber of users and workload requiring an RDBMS won’t have any problems. Most cloud
providers have an RDBMS offering for these cases. But when applications are launched
in environments that have massive workloads, such as web services, their scalability
requirements can change quickly and grow large. The first scenario can be difficult
to manage if you have a relational database sitting on a single in-house server. For
example, if your load triples overnight, how quickly can you upgrade your hardware?
The second scenario can be too difficult to manage with a relational database, because
it becomes a bottleneck choking the application’s ability to scale. We’ll cover solutions
to this in depth in chapter 5.

As you’ve already learned, one of the core benefits of the cloud is the ability to
quickly (or automatically, as we’ll show) add more servers to an application as its load
increases, thereby scaling it to heavier workloads. But it’s hard to expand an RDBMS
this way. You have to either replicate data across the new servers or partition between
them. In either case, adding a machine requires data to be copied or moved to the new
server. This data shipping is a time-consuming and expensive process, so databases are
unable to be dynamically and efficiently provisioned on demand.

A big challenge with RDBMS partitioning or replicating is maintaining referential
integrity . Referential integrity requires that every value of one attribute (column) of a
relation (table) exist as a value of another attribute in a different (or the same) relation

32 CHAPTER 2 Understanding cloud computing classifications

(table). A little less formally, any field in a table that’s declared a foreign key can
contain only values from a parent table’s primary key or a candidate key . In practice,
this means that deleting a record that contains a value referred to by a foreign key in
another table break’s referential integrity. When you partition or replicate a database, it
becomes nearly impossible to guarantee maintenance of referential integrity across all
databases. This extremely useful property of RDBMS—its ability to construct a relation
out of lots of small index tables that are referred to by values in records—becomes
unworkable when these databases have to scale to deal with huge workloads, but cloud
applications are otherwise ideally suited for this purpose.

THE NOSQL MOVEMENT

Since 1998, there has been a small but rapidly growing movement away from SQL
databases. Instead, participants in this movement promote a class of nonrelational
data stores that break some of the fundamental guarantees of SQL in favor of being
able to reach massive scale. This is obviously important for some cloud applications.
These non-SQL data stores may not require fixed table schemas and usually avoid
join operations . They’re described as scaling horizontally. Some categorize them as
structured storage .

NoSQL architecture

Relational databases have a limitation on handling big data volumes and typical
modern workloads. Today’s scale is unprecedented and can’t be handled with
relational SQL databases. Examples of enormous scale are synonymous with the
most popular sites: Digg ’s 3 TB for green badges, Facebook ’s 50 TB for inbox search,
and eBay ’s 2 PB overall data.

NoSQL systems often provide weak consistency guarantees, such as eventual
consistency and transactions restricted to single data items; in most cases, you can
impose full ACID (atomicity, consistency, isolation, durability) guarantees by adding a
supplementary middleware layer.

Several NoSQL systems employ a distributed architecture , with the data being held
in a redundant manner on several servers, often using a distributed hash table . In
this way, the system can be scaled up easily by adding more servers, and failure of
a server can be tolerated.

Some NoSQL advocates promote simple interfaces, such as associative arrays or
key-value pairs . Other systems, such as native XML databases, promote support of
the XQuery standard.

Clearly, we’re in the early days of cloud evolution, with a lot of development yet to come.

A new non-SQL type of database, generically a key-value database, does scale well.
Consequently, it’s started to be used in the cloud. Key-value database s are item-oriented,
meaning all relevant data relating to an item are stored in that item. A table can

The technological underpinnings of cloud computing 33

contain vastly different items. For example, a table may contain car makes, car models,
and car color items. This means data are commonly duplicated between items in a
table (another item also contains Color: Green). You can see this in figure 2.5. In an
RDBMS, this is anathema; here, this is accepted practice because disk space is relatively
cheap. But this model allows a single item to contain all relevant data, which improves
scalability by eliminating the need to join data from multiple tables. With a relational
database, such data needs to be joined to be able to regroup relevant attributes. This
is the key issue for scaling—if a join is needed that depends on shared tables, then
replicating the data is hard and blocks easy scaling.

When companies set out to create a public computing cloud (such as Amazon) or build
massively parallel, redundant, and economical data-driven applications (such as Google),
relational databases became untenable. Both companies needed a way of managing data
that was almost infinitely scalable, inherently reliable, and cost effective. Consequently,
both came up with nonrelational database systems based on this key-value concept that
can handle massive scale. Amazon calls its cloud database offering SimpleDB , and Google
calls its BigTable . (Both were developed long before either company launched a cloud.
They created these structures to solve their own problems. When they launched a cloud,
the same structures became part of their cloud offerings.)

Google’s BigTable solution was to develop a relatively simple storage management
system that could provide fast access to petabytes of data, potentially redundantly
distributed across thousands of machines. Physically, BigTable resembles a B-tree
index-organized table in which branch and leaf nodes are distributed across multiple
machines. Like a B-tree, nodes split as they grow, and—because nodes are distributed—
this allows for high scalability across large numbers of machines. Data elements in
BigTable are identified by a primary key, column name, and, optionally, a timestamp.
Lookups via primary key are predictable and relatively fast. BigTable provides the data
storage mechanism for Google App Engine. You’ll learn about this PaaS cloud-based
application environment in detail later in this chapter.

Google charges $180 per terabyte per month for BigTable storage. Here are some
examples of BigTable usage (in Python):

This code declares a data store class:

Figure 2.5 The same data as in
figure 2.4, shown for a key-value type
of database. Because all data for an
item (row) is contained in that item,
this type of database is trivial to
scale because a data store can be
split (by copying some of the items)
or replicated (by copying all the items
to an additional data store), and
referential integrity is maintained.

34 CHAPTER 2 Understanding cloud computing classifications

class Patient(db.Modal);
 firstName = db.UserProperty()
 lastName = db.UserProperty()
 dateOfBirth = db.DateTimeProperty()
 sex = db.UserProperty()

This code creates and stores an object:

patient = Patient()

patient.firstName = "George"
patient.lastName = "James"
dateOfBirth = "2008-01-01"
sex = "M"

patient.put()

This code queries a class:

patients = Patient.all()

for patient in patients:
 self.response.out.write('Name %s %s. ',
 patient.firstName, patient.lastName)

And this code selects the 100 youngest male patients:

allPatients = Patient.all()
allPatients.filter('sex=', 'Male')
allPatients.order('dateOfBirth')
patients = allPatients.fetch(100)

Amazon’s SimpleDB is conceptually similar to BigTable and forms a key part of the
Amazon Web Services (AWS) cloud computing environment. (Microsoft’s SQL Server
Data Services [SSDS] provides a similar capability in their Azure cloud.) Like BigTable,
this is a key-value type of database. The basic organizing entity is a domain . Domains are
collections of items that are described by attribute-value pairs. You can see an abbrevi-
ated list of the SimpleDB API calls with their functional description in table 2.4.

Table 2.4 Amazon’s SimpleDB API summary

API call API functional description

CreateDomain Creates a domain that contains your dataset.

DeleteDomain Deletes a domain.

ListDomains Lists all domains.

DomainMetadata Retrieves information about creation time for the domain,
storage information both as counts of item names and
attributes, and total size in bytes.

PutAttributes Adds or updates an item and its attributes, or adds
attribute-value pairs to items that exist already. Items are
automatically indexed as they’re received.

BatchPutAttributes For greater overall throughput of bulk writes, performs up to
25 PutAttribute operations in a single call.

The technological underpinnings of cloud computing 35

Table 2.4 Amazon’s SimpleDB API summary (continued)

API call API functional description

DeleteAttributes Deletes an item, an attribute, or an attribute value.

GetAttributes Retrieves an item and all or a subset of its attributes and
values.

Select Queries the data set in the familiar “Select target from
domain_name where query_expression” syntax. Supported
value tests are =, !=, <, >, <=, >=, like, not like,
between, is null, isn’t null, and every().
Example: select * from mydomain where
every(keyword) = "Book". Orders results using the
SORT operator, and counts items that meet the condition(s)
specified by the predicate(s) in a query using the Count
operator.

Converting an existing application to use one of these cloud-based databases is some-
where between difficult and not worth the trouble; but for applications already using
the Object-Relational Mapping (ORM)-based frameworks, these cloud databases can
easily provide core data-management functionality. They can do it with compelling scal-
ability and the same economic benefits of cloud computing in general. But as table 2.5
illustrates, there are definite drawbacks to these new types of cloud databases that you
must take into account when contemplating a shift to the cloud.

Table 2.5 Cloud database drawbacks

Database use Challenges faced with a cloud database

Transactional support and
referential integrity

Applications using cloud databases are largely responsible for maintaining
the integrity of transactions and relationships between tables.

Complex data access Cloud databases (and ORM in general) excel at single-row transactions:
get a row, save a row, and so on. But most nontrivial applications have
to perform joins and other operations that cloud databases can’t.

Business Intelligence Application data has value not only in terms of powering applications
but also as information that drives business intelligence. The dilemma
of the pre-relational database, in which valuable business data was
locked inside impenetrable application data stores, isn’t something to
which business will willingly return.

Cloud databases could displace the relational database for a significant segment of next-
generation, cloud-enabled applications. But business is unlikely to be enthusiastic about
an architecture that prevents application data from being used for business intelligence
and decision-support purposes, which fundamentally require a relational database. An
architecture that delivered the scalability and other advantages of cloud databases with-
out sacrificing information management would fit the bill. We can expect a lot of inno-
vation and advancements in these database models over the next few years.

36 CHAPTER 2 Understanding cloud computing classifications

The last technological underpinning you need to learn about is elasticity, the
transmission in the ongoing vehicle analogy.

2.1.6 Elasticity: scaling your application as demand rises and falls

The transmission smoothly adapts the speed of a car’s wheels to the engine speed as
you vary the accelerator position. Similarly, elasticity enables an application running
in a cloud to smoothly expand and contract according to demand. More precisely,
elasticity is the ability to have capacity as demand increases and to release that capacity
when you’re done with it. Many big organizations have been close to disaster or faced
it because of scalability failures in times of need.

Elasticity and celebrity deaths
In July 2009, two celebrity deaths occurred on the same day. First, Charlie’s Angels
star Farrah Fawcett died, which resulted in a minor news flurry. Then, later in the
afternoon, a major web storm erupted when news of Michael Jackson ’s death hit the
social web. Unexpectedly, Twitter had major scaling issues dealing with the sudden
influx of hundreds of thousands of tweets as news of Jackson’s death spread. But
Twitter wasn’t alone.

According to TechCrunch , “Various reports had the AOL -owned TMZ , which broke the
story, being down at multiple points throughout the ordeal. As a result, Perez Hilton ’s
hugely popular blog may have failed as people rushed there to try and confirm the
news. Then the LA Times had a report saying Jackson was only in a coma rather than
dead, so people rushed there, and that site went down. (The LA Times eventually
confirmed his passing.)”

Numerous examples exist of a news story, a product announcement, or even the
infamous Victoria’s Secret Super Bowl commercial, sending people directly to a web
site that then crashes. Too much traffic meets with insufficient capacity and results
in catastrophe. When people are directed to a site and it then breaks down, their
reaction is to not try that again. These issues severely hurt a company’s business.
This illustrates the criticality of being able to scale as capacity dynamically grows.

Scalability is about the cloud platform being able to handle an increased load of users
working on a cloud application. Elasticity is the ability of the cloud platform to scale up
or down based on need without disrupting the business. Without this, the economies
of moving a business/application to the cloud don’t make sense.

The example code snippets that follow set up an EC2 application to be load balanced
and auto-scaled (that is, elastic) with a minimum of 2 instances and a maximum of 20
instances. Auto-scaling in this example is configured to scale out by 1 instance when
the application’s average CPU utilization exceeds a threshold of 80 percent and scale
in by 1 instance when it drops below 40 percent for 10 minutes.

Call CreateLoadBalancer with the following parameters:
AvailabilityZones = us-east-1a

Understanding the different classifications of cloud s 37

LoadBalancerName = MyLoadBalancer
Listeners = lb-port=80,instance-port=8080,protocol=HTTP

Call CreateLaunchConfiguration with the following parameters:
ImageId = myAMI
LaunchConfigurationName = MyLaunchConfiguration
InstanceType = m1.small

Call CreateAutoScalingGroup with the following parameters:
AutoScalingGroupName = MyAutoScalingGroup
AvailabilityZones = us-east-1a
LaunchConfigurationName = MyLaunchConfiguration
LoadBalancerNames = MyLoadBalancer
MaxSize = 20
MinSize = 2

Call CreateOrUpdateScalingTrigger with the following parameters:
AutoScalingGroupName = MyAutoScalingGroup
MeasureName = CPUUtilization
Statistic = Average
TriggerName = MyTrigger1a
Namespace = AWS/EC2
Period = 60
LowerThreshold = 40
LowerBreachScaleIncrement = -1
UpperThreshold = 80
UpperBreachScaleIncrement = 1
BreachDuration = 600

You learned in chapter 1 that there is more than one flavor of cloud computing. Let’s
combine what you learned in chapter 1 about the different types of clouds with what
you now know about the six critical enabling technologies in clouds to better under-
stand how these different flavors of clouds work, what they offer, and how they differ.
The next section will help you better understand which is best for you.

2.2 Understanding the different classifications of cloud s
Now that you’ve learned about the technological underpinnings of cloud comput-
ing, such as virtualization, elasticity, storage, and databases, it’s useful to understand
how those concepts are employed in the different types (classifications) of cloud
computing services being offered. Let’s go back to the taxonomy of cloud types from
chapter 1—IaaS, PaaS, and DaaS—to classify the clouds from the most prominent pro-
viders in the industry.

2.2.1 Amazon EC2: Infrastructure as a Service

Amazon EC2 is categorized as IaaS (some cloud observers call it HaaS, but Amazon has
added so many additional services that Hardware as a Service would now be a misno-
mer). It was the first and is by far the biggest in this category. Amazon opened its ser-
vice in 2006 after initially using excess capacity from its retail operation. The company
claimed to have over 500,000 users by the end of 2008.

38 CHAPTER 2 Understanding cloud computing classifications

Amazon EC2 is the most general purpose of the major clouds but has the least
support for automatic scaling or failover , both of which have to be programmed
into the application. This is in contrast to the automatic and invisible scaling that
occurs in the PaaS types of clouds, such as Google’s AppEngine, which we’ll discuss in
section 2.2.3. In IaaS-type clouds, such as EC2, elasticity requires careful programming
using their APIs. On the other hand, you can use any programming language, and
you have complete control over your
application in an IaaS cloud. Sure, it
requires more manual work, but you get
something that has the appearance of
being physical hardware that you have
control over from the operating system
outward. The LAMP stack is the easiest
and most common EC2 configuration
(see table 2.6).

Amazon EC2 and Xen paravirtualization
Amazon EC2 utilizes a customized version of the open source Xen hypervisor , taking
advantage of paravirtualization. Because paravirtualized guest OS s rely on the
hypervisor to provide support for operations that normally require privileged access,
the guest OS runs with no elevated access to the CPU.

Paravirtualization is more efficient than a virtualized environment where the guest
OS runs unmodified. But the OS must be ported to the paravirtualized environment
so that certain OS tasks that would have to be performed by the VMM and run more
slowly can be directly executed by the guest OS. This is why Amazon doesn’t run any
OS you may desire—it runs only OSs that it or the original vendor has ported and
fully tested.

Table 2.6 The components of the LAMP stack
in an IaaS cloud

L Linux Operating system

A Apache Web server

M MySQL Relational database

P PHP Server side of website

Amazon has an extensive API for all its services, some of which are described in table
2.7. It has a SOAP as well as a simple HTML (GET, POST) form for its APIs. The com-
pany needs only a dozen and a half calls to request and configure virtualized hardware
in the cloud.

Table 2.7 Other Amazon cloud services (effectively providing some PaaS capabilities)

Service Description

Simple Storage Service (S3) Cloud storage used to store and retrieve large amounts of data
from anywhere on the web through a simple API. Well integrated
with EC2: AMIs are stored in S3, and data transferred from S3 to
EC2 doesn’t invoke separate charges.

Understanding the different classifications of cloud s 39

Table 2.7 Other Amazon cloud services (effectively providing some PaaS capabilities) (continued)

Service Description

SimpleDB Provides the core database functions of indexing (special
organizational entities for faster lookups) and querying. Avoids the
big expense of relational database licensing, the requisite DBA,
and the complex setup. But it isn’t a relational database, has no
schema, and doesn’t work with SQL.

CloudFront A web service for content delivery that competes with Akamai .
Provides an easy way to distribute content to end users with low
latency and high data-transfer speeds in a pay-as-you-go model.

Simple Queue Service (SQS) A hosted queue for storing messages as they travel between
computers. Useful for moving data between distributed
components of applications that perform different tasks, without
losing messages or requiring each component to be always
available.

EC2 pricing starts at roughly a nickel per small Linux-based instance (CPU) hour, up
to about half a dollar on a high-end Linux instance.6 S3 pricing is about $0.15 per GB
per month, scaling downward as more storage is used.

2.2.2 Microsoft Azure: Infrastructure as a Service

Microsoft’s Azure is IaaS in the same way as Amazon EC2, but it also has other services
that operate more at the PaaS level. Many of Microsoft’s end-user applications are be-
ing recast to run in the cloud. As a result, increasingly, this overall platform is trying
to reach the SaaS level to head off Google’s thrust against Microsoft Office with the
Google Docs and Google Apps SaaS offerings.

The box labeled Windows Azure in figure 2.6 is Windows Server 2008 modified
to run in the cloud environment. This means it was paravirtualized to make it run
efficiently in the virtualized environment created by running Microsoft ’s Hypervisor
on bare hardware in Microsoft’s cloud data centers.

Internally, the OS layer—derived from Windows Server 2008—consists of four
pillars: storage (like a file system); the fabric controller, which is a management
system for modeling/deploying and provisioning; virtualized computation/VM; and a
development environment, which allows developers to emulate Windows Azure on their
desktop and plug in Visual Studio, Eclipse, or other tools to write cloud applications
against it. Because of this architecture, you merely have to deploy Azure on a single
machine; then, you can duplicate multiple instances of it on the rest of the servers in
the cloud using virtualization technology.

6 http://aws.amazon.com/ec2/pricing/

http://aws.amazon.com/ec2/pricing/

40 CHAPTER 2 Understanding cloud computing classifications

Applications for Microsoft’s Azure are written in proprietary programming environ-
ments like Visual Studio using the .NET libraries, and compiled to the Common Lan-
guage Runtime, Microsoft ’s language-independent managed environment.

WINDOWS AZURE API

The Windows Azure API is a REST-based API that uses X.509 client certificates for au-
thentication. Table 2.8 lists a portion of the API, giving you an idea of how applications
running in the Azure cloud are manipulated and controlled. This is the set of calls
related to performing operations on hosted services.

Figure 2.6 The Windows Azure architecture and framework. At the bottom level is the Windows
Azure operating system. This runs in the virtualization environment created by Microsoft’s Hypervisor
running on bare hardware. At the top layer are end-user applications, which Microsoft is recasting to be
delivered as SaaS. Source: Microsoft.

Similar to Amazon, a set of building-block services run on top of Azure creating
Microsoft’s PaaS capabilities. The initial set of services includes the following:

 Live Services ■

 SQL Services ■

 .Net Services ■

 SharePoint Services■

 CRM Services ■

You can treat these lower-level services as APIs—they have no user interface elements—
when constructing cloud applications.

Azure pricing is comparable to Amazon with computing time set at $0.12 per hour,
storage at $0.15 per GB, and storage transactions at $0.01 per 10 KB. For the structured
database, fees for the web edition are set at up to 1 GB relational database at $9.99 per
month and for the business edition up to 10 GB relational database at $99.99 per
month. A tiered, all-you-can-eat (within limits) model is said to be coming.

Understanding the different classifications of cloud s 41

Table 2.8 A portion of the RESTful Windows Azure API

Service Description

List Hosted Services Lists the hosted services available under the current
subscription.

GET

https://management.core.windows.net/<subscription-id>/services/

hostedservices

Get Hosted Service Properties Retrieves system properties for the specified hosted
service. These properties include the service name and
service type; the name of the affinity group to which the
service belongs, or its location if it isn’t part of an affinity
group; and, optionally, information about the service’s
deployments.

GET

https://management.core.windows.net/<subscription-id>/services/

hostedservices/

 <service-name>

Create Deployment Uploads a new service package and creates a new
deployment on staging or production.

POST

https://management.core.windows.net/<subscription-id>/services/

hostedservices/

 <service-name>/deploymentslots/<deployment-slot-name>

Get Deployment May be specified as follows. Note that you can delete
a deployment either by specifying the deployment slot
(staging or production) or by specifying the deployment’s
unique name.

GET

https://management.core.windows.net/<subscription-id>/services/

hostedservices/
 <service-name>/deploymentslots/<deployment-slot>/

GET

https://management.core.windows.net/<subscription-id>/services/

hostedservices/

 <service-name>/deployments/<deployment-name>/

Swap Deployment Initiates a virtual IP swap between the staging and
production deployment slots for a service. If the service
is currently running in the staging environment, it’s
swapped to the production environment. If it’s running
in the production environment, it’s swapped to staging.
This is an asynchronous operation whose status must be
checked using Get Operation Status.

POST

https://management.core.windows.net/<subscription-id>/hostedservices/

 <service-name>

https://management.core.windows.net/
https://management.core.windows.net/
https://management.core.windows.net/
https://management.core.windows.net/
https://management.core.windows.net/
https://management.core.windows.net/

42 CHAPTER 2 Understanding cloud computing classifications

Table 2.8 A portion of the RESTful Windows Azure API (continued)

Service Description

Delete Deployment Deletes the specified deployment. This is an
asynchronous operation.

DELETE

https://management.core.windows.net/<subscription-id>/services/

hostedservices/
 <service-name>/deploymentslots/<deployment-slot>

DELETE

https://management.core.windows.net/<subscription-id>/services/

hostedservices/

 <service-name>/deployments/<deployment-name>

2.2.3 Google App Engine: Platform as a Service

App Engine is a pure PaaS cloud targeted exclusively at traditional web applications,
enforcing an application structure of clean separation between a stateless computation
tier and a stateful storage tier. The virtualization and the elasticity that are so visible
in the IaaS model are almost completely invisible here. But they’re a big part of the
picture behind the scenes. One of the selling propositions of this model is its automatic
elasticity in the face of capacity requirement changes.

The App Engine programming languages are Python and Java . App Engine isn’t
suitable for general-purpose computing. It works best for web applications and relies
on the assumption of a request-reply structure, which assumes long periods of no CPU
utilization (such as, human think time). Consequently, Google can and does severely
ration CPU time for each request.

App Engine’s automatic scaling and high-availability mechanisms, and the
proprietary MegaStore data storage (built on BigTable) available to App Engine
applications, all rely on these constraints. But if your application fits within those
constraints, there is probably no faster and cheaper way to build an application that
scales automatically and runs on the largest cloud on the planet.

APP ENGINE DEVELOPMENT ENVIRONMENT

The App Engine development environment consists of these elements:

■ Sandbox— Applications run in a secure environment that provides limited ac-
cess to the underlying operating system. These limitations allow App Engine to
distribute web requests for the application across multiple servers and to start
and stop servers to meet traffic demands. The sandbox isolates your application
in its own secure, reliable environment independent of the hardware, operating
system, and physical location of the web server.

https://management.core.windows.net/
https://management.core.windows.net/

Understanding the different classifications of cloud s 43

■ Java runtime environment—You can develop applications for the Java 6 runtime
environment using common Java web development tools and API standards. An
app interacts with the environment using the Java Servlet standard and can use
common web application technologies, such as JavaServer Pages (JSP s). Apps
access most App Engine services using Java standard APIs. The environment
includes the Java SE Runtime Environment (JRE) 6 platform and libraries. The
restrictions of the sandbox environment are implemented in the JVM . An app
can use any JVM bytecode or library feature, as long as it doesn’t exceed the
sandbox restrictions.

■ Python runtime environment— You can develop applications using the Python
2.5 programming language and run it on a Python interpreter. App Engine
includes APIs and tools for Python web application development, including a
data-modeling API, a web application framework, and tools for managing and
accessing the App’s data. The Python environment includes the Python standard
library within the limitations of the sandbox environment. Application code
written for the Python environment must be written exclusively in Python. The
Python environment provides APIs for the datastore, Google Accounts, URL
fetch, and email services.

■ Datastore—App Engine provides a distributed data-storage service that features a
query engine and transactions. This distributed datastore scales with the applica-
tion’s needs automatically. As we discussed previously regarding cloud databases,
the App Engine datastore isn’t like a traditional relational database. Data objects,
or entities, have a kind and a set of properties. Queries can retrieve entities of a
given kind filtered and sorted by the values of the properties. Property values can
be of any of the supported property value types. Datastore entities are schemaless.
The application code enforces and provides the structure of data entities. The
Java JDO/JPA interfaces and the Python datastore interface include features for
applying and enforcing this structure.

App Engine is free under these daily thresholds: 6.5 hours of CPU time, and 1 GB
of data transferred in and out of the application. Beyond this, outgoing bandwidth
costs $0.12 per GB, incoming bandwidth costs $0.10 per GB, CPU time is $0.10 per
hour, stored data is $0.15 per GB per month, and recipients emailed are $0.0001 per
recipient.

2.2.4 Ruby on Rails in a cloud: Platform as a Service

Ruby on Rails (RoR) is an open-source web application framework for the Ruby pro-
gramming language. It’s intended to be used with an agile development methodology,
often used by web developers due to its suitability for short, client-driven projects.
Similar to Google’s App Engine, RoR applications are limited to request-response ar-
chitecture web applications.

44 CHAPTER 2 Understanding cloud computing classifications

OPEN SOURCE SOFTWARE Computer software available in source code form
for which the source code and certain other rights normally reserved for
copyright holders are provided under a software license that permits users
to study, change, and improve the software. Some consider open source a
philosophy; others consider it a pragmatic methodology. Before the term
open source became widely adopted, developers and producers used a variety
of phrases to describe the concept; open source gained hold with the rise of
the internet and the attendant need for massive retooling of the computing
source code. Open-source software is most often developed in a public,
collaborative manner.

The Ruby language was designed to combine Smalltalk ’s conceptual elegance, Python’s
ease of use and learning, and Perl ’s pragmatism. Many teams experience 10X faster
development of web applications using RoR. But many have reported significant chal-
lenges getting RoR to scale massively, which probably has to do with architecture and
design choices made in the application as opposed to something endemic to RoR itself.

Many small companies jumped in early to offer RoR stacks that run on top of
Amazon’s EC2, including Heroku , Aptana , EngineYard , and others.

2.2.5 Salesforce.com ’s Force.com : Platform as a Service

Salesforce.com is the most successful SaaS application used in the enterprise. It’s a
customer-relationship-management (CRM) application that has run strictly as a cloud
application since 1999.

Force.com is the company’s PaaS capability, where developers use the Apex
programming language to create add-on applications that integrate into the main
Salesforce application and are hosted on Salesforce.com’s cloud infrastructure.

Google and Salesforce have created an integration between App Engine and Force.
com such that applications can be built using either environment and still access the
stored repository of corporate data on Salesforce’s site.

Force.com also runs an exchange called AppExchange ; it’s a directory of applications
built for Salesforce by third-party developers, which users can purchase and add to their
Salesforce environment. More than 800 applications are available from over 450 ISVs.

The Force.com list price is $5.00 per login with a maximum of five logins per user
per month. According to the company’s website, “Force.com cloud pricing is for
occasional-use, widely-deployed apps and is available for platform use only and not for
CRM applications.”

Our last classification is a strange one—strange because it’s not about a different
type of application environment but instead is about a different ownership structure.
So-called Datacenter as a Service is about private companies creating a private cloud
just for their use.

2.2.6 Private clouds : Datacenter as a Service (DaaS)

Private cloud (also internal cloud and corporate cloud) is a term for a computing architec-
ture that provides hosted services to a limited number of people behind a firewall. The

Understanding the different classifications of cloud s 45

same advances in virtualization, automation, and distributed computing that enable
the cloud for Amazon, Microsoft, and Google have allowed corporate network and
data-center administrators to effectively become service providers that meet the needs
of their customers within the corporation.

The concept of a private cloud is designed to appeal to an organization that needs
or wants more control over its data than it can get by using a third-party hosted service,
such as Amazon’s EC2 or S3. Internal IT providers that build private clouds have to
make fundamental changes in their operations so they behave and provide benefits (on
a smaller scale) similar to those of cloud computing providers. In addition to economic
gains through higher utilization and a pay-for-what-you-use model, an enterprise, to
enable the private cloud model, implements changes in operations which, at the very
least, makes an organization better equipped to shift to or overflow to a public cloud
when appropriate.

The contrarian view
Here’s the rub: some say private clouds are expensive data centers with a fancy
name. Pundits predict that within the next year or so, we’ll have seen the rise and
fall of this concept. Whereas everyone agrees that virtualization, service-oriented
architectures, and open standards are all great things for companies operating a
data center to consider, critics argue that all this talk about private clouds is a
distraction from the real news: the vast majority of companies shouldn’t need to
worry about operating any sort of data center anymore, cloud-like or not.

SOME CONCERNS FOR THOSE THINKING ABOUT PRIVATE CLOUDS

If you’re considering implementing a private cloud, keep the following in mind:
■ Private clouds are small scale. There’s a reason why most innovative cloud com-

puting providers have their roots in powering consumer web technology—that’s
where the numbers are. Few corporate data centers will see anything close to the
type of volume seen by these vendors. And volume drives cost savings through
the huge economies of scale we’ve discussed.

■ Legacy applications don’t cloudify easily. Legacy applications moved to a private
cloud will see marginal improvements at best. You can achieve only so much
without re-architecting these applications to a cloud infrastructure.

■ On-premises doesn’t mean more secure. The biggest drivers toward private clouds
have been fear, uncertainty, and doubt about security. For many, it feels more se-
cure to have your data behind your firewall in a data center that you control. But
unless your company spends more money and energy thinking about security
than Amazon, Google, and Salesforce, that is a fallacy.

■ Do what you do best. There’s no simple set of tricks that an operator of a data
center can borrow from Amazon or Google. These companies make their living
operating the world’s largest data centers. They’re constantly optimizing how

news:the

46 CHAPTER 2 Understanding cloud computing classifications

they operate based on real-time performance feedback from millions of transac-
tions. You can try to learn from and emulate them, but your rate of innovation
will never be the same—private clouds will always be many steps behind the pub-
lic clouds.

AMAZON VIRTUAL PRIVATE CLOUD

Amazon Virtual Private Cloud (Amazon VPC) is a secure and seamless bridge between
a company’s existing IT infrastructure and the AWS cloud. Although it isn’t a private
cloud as we defined it, this approach offers corporations a hybrid model merging as-
pects of their data center with Amazon’s cloud.

Amazon VPC enables an enterprise to connect its existing infrastructure to a set of
isolated AWS compute resources via a Virtual Private Network (VPN) connection and
to extend existing management capabilities, such as security services, firewalls, and
intrusion-detection systems, to include AWS resources. You’ll learn much more about
cloud security, private clouds, and VPC in chapter 4.

Until now, we’ve explored the technological underpinnings of clouds to understand
how they work, and we’ve applied that knowledge to a few of the most prominent
clouds in a variety of categories to understand how they compare and contrast. You’re
now informed enough to ask this question: What type of cloud do I need?

2.3 Matching cloud providers to your needs
We’ve looked under the hood of a lot of different cloud types, their APIs, their other ser-
vice offerings, and the technologies that underpin them. Which of them is appropriate
for you? How can you prevent lock-in when you do make the choice? We’ll try to answer
those questions by going back through the major cloud providers and applying a frame-
work of decision criteria by which you can evaluate each one for your projects.

2.3.1 Amazon web services IaaS cloud

Summarizing what we’ve explored so far, AWS is a flexible, lower-level offering (closer
to hardware), which means you have more possibilities. And in general, it will be higher
performing at the cost of “everything is left up to you,” including how and when to
scale, move or replicate your data, and more.

Amazon EC2 runs the platform you provide, supports all major programming
languages, and offers a set of industry-standard services (getting more standard as
standards groups and the open source Eucalyptus seeks to formalize theirs as the
standard cloud API). But Amazon, being an IaaS, requires much more work, which
means a longer time-to-market for your applications.

Use AWS if you

■ Want to use third-party open-source software
■ Have existing code
■

Port code to another language
Want to transfer a web app to your own machine/servers later

■

Matching cloud providers to your needs 47

■

Need to stress/load test an app (for example, load up 1,000 instances)
Want complete control

■

And as for avoiding lock-in , Amazon EC2 is good because Amazon-compatible services
can and will be easily provided by other companies as well as an open-source initiative.
The leader always gets to set the standards. EC2 is practically the closest to zero lock-in
of any choice you can make today.

2.3.2 Microsoft Windows Azure IaaS and PaaS cloud

Azure is intermediate between application frameworks, such as App Engine, and hard-
ware virtual machines, such as EC2. Microsoft is trying to make the transition from
desktop (data center) to its cloud as seamless as possible. The company suggests that
you can build and test an application locally and then deploy to its cloud. But Micro-
soft does admit that all UI and any data-extraction logic must be rewritten to deal with
low-bandwidth internet connections. Note that we said its cloud. In that sense, Micro-
soft is similar to App Engine and Force.com in terms of locking you in to its cloud, run
by the company.

Use Windows Azure if you

■ Already use the .NET and SQL Server portions of the Microsoft stack
■ Have existing code developed to those Microsoft APIs
■ Have teams that normally develop in Visual Studio using C#
■

Have no issue with lock-in to Microsoft
Want to blend development from desk top to cloud

■

As for lock-in , Windows Azure isn’t looking as bad as Google App Engine. Although
it will still be hosted exclusively by Microsoft, it may be possible for other companies
to come up with (almost) compatible cloud service because core pieces of Windows
Azure are based on the well-known SQL Server, IIS, and .NET framework stacks.

2.3.3 Google App Engine PaaS cloud

Google App Engine is a tightly controlled environment—a decision Google made to
enable automatic scaling of application threads as well as the datastore. The environ-
ment supports only Python and Java, and no installation of any open source software
is possible.

Use App Engine if you

■ Have no preexisting code
■ Are building request-response web apps or mashups
■ Consider time-to-market the most important thing
■

Aren’t worried about lock-in to Google
Aren’t doing anything fancy (installing software)

■

App Engine is high on the lock-in scale. It’s hard to imagine any compatible products
from any other company for a long time, if ever. It’s proprietary, and Google doesn’t plan

48 CHAPTER 2 Understanding cloud computing classifications

to release its technology. Automatic scale and time-to-market have many advantages,
but almost complete lock-in will most likely be the price you pay for those benefits.

2.3.4 Ruby on Rails PaaS cloud

Ruby is slightly more computationally expensive than other languages, but having easy
resource expansion available can cure a lot of the “what if I get mentioned on Oprah?”
scares that business people experience. Rails is a particularly good match for cloud
computing because of its shared-nothing architecture. This means you can generate
new instances of an application, and they will begin to run. And developers love Ruby
because of their much higher productivity. Many small companies are now providing
RoR clouds (many layered on top of Amazon).

Use Ruby on Rails if you

■ Are building request-response web apps with existing Ruby expertise
■ Consider time-to-market critical
■

Don’t care about lock-in
Aren’t doing anything fancy (installing software)

■

Lock-in isn’t a big concern with RoR because, as we’ve said, there are many choices of
RoR vendors and probably more to come.

2.3.5 Force.com PaaS cloud

Force.com is an extension of the SaaS service Salesforce.com. Many companies have
been using Salesforce for a long time. They have rich, sophisticated databases of sales
contacts, history of sales cycles, information about their products, and a lot of other
sales-process related information. This information forms the crown jewels of any
company’s sales team, and companies want many applications that aren’t built into
Salesforce.com. For this reason, Salesforce.com created a framework using many of
the same back-end services used by the company’s main SaaS application, operating
on the same back-end data, and made it accessible and programmable to end users.
Force.com is ideal for building applications that tie into your existing Salesforce.com
databases, such as sales contacts, the internal sales team, your products, and so on.

Use Force.com if you

■ Are already a customer of Salesforce.com’s SaaS customer-resource-management
product

■ Have a requirement for a simple mashup style of web application
■ Are willing to use Force.com’s specialized programming language
■ Don’t care about lock-in

We didn’t include a section about when to use private cloud because it’s a much more
complex discussion. We’ll deal with the subject in chapter 4.

 Summary 49

2.4 Summary
This chapter built on your understanding from chapter 1 of the types of clouds and
the reasons—technical and economic—for this step in the evolution of computing.
We’ve focused on how the cloud works by looking under the hood and examining the
technological underpinnings. Cloud providers are making phenomenal economies
of scale. Their costs keep getting lower while their specialized expertise in operating
these massive data centers gets better.

This chapter examined some of the core enabling technologies of cloud computing.
First and foremost is virtualization, which even most corporate data centers have
embraced as a way to increase server utilization and thereby lower costs. Because a
cloud is a virtualized server environment where you can quickly crate new instances of
machines or applications and then control them over the network, both automation
and network access are also vital in cloud computing. An API to create, operate,
expand elastically, and destroy instances is also required. Trends seem to be leading
in the direction of Amazon’s API becoming an industry standard. We looked at cloud
storage, focusing on Amazon’s S3 API as an example.

You saw how relational databases don’t scale because they have to be shared. This
has led to the emergence of new key-value types of databases as the norm in the cloud.
One of the biggest benefits of moving to the cloud is the ability to scale almost infinitely
as application demand grows. You learned how this elasticity works with the example of
the calls required in Amazon EC2 to create an automatically scaled, load-balanced EC2
application. We compared Amazon’s SimpleDB to Google’s BigTable.

This chapter also compared and contrasted the major flavors of cloud computing.
Amazon EC2 is the most prominent example of IaaS. Microsoft Azure is mostly IaaS
as well but has many PaaS offerings. Google is the most prominent of the PaaS with
its App Engine. The plethora of Ruby on Rails offerings (such as Force.com from
Salesforce) are highly specialized types of platforms.

Somewhat tongue in cheek, we expanded the taxonomy of cloud terms to include
data center as a service and examined the concept of private clouds to see if this is
something that will stick or is just a fad. This understanding of the cloud classifications
should help you avoid the all-too-common “apples to oranges” comparisons between,
say, an IaaS and a PaaS cloud. You’re now in a position to distinguish between them.
More important, you’re in a better position to make an informed decision about what’s
best for you, depending on what you’re trying to do.

You’ve learned that a major driver behind this IT evolution isn’t technology but
economics. Consequently, we’ll spend the next chapter looking closely at the business
case for cloud computing.

3

50

The business case for
cloud computing

This chapter covers
■ The economics of cloud computing

■ Where the cloud does and doesn’t make sense

■ Using the cloud in zero-capital startups

■

Cloud computing in the enterprise

Using the cloud in small and medium businesses

■

Chapter 1 gave you the “what” of cloud computing. Delving into the technology
behind cloud computing in chapter 2, you learned the “how.” Let’s now look at
the “why” and “when.” These two questions have to do with the economics and the
broader business issues that you need to examine when and if you consider moving
to the cloud. You’ll need to know how to make the transition, the type of cloud that
makes sense, and when is the right time to make the move.

In looking at the economics of cloud computing, first we’ll examine the most
common models for setting up and managing IT infrastructure including internal
IT, colocated, managed services, and the cloud. A good way of doing this is to
compare the detailed costs of deployment in the different models—comparing

The economics of cloud computing 51

apples to apples. Next, we’ll explore what application characteristics do and don’t
make sense for deploying to the cloud. Zero-capital startups are a new and interesting
phenomenon made possible by the cloud. But many of the parameters that make
a zero-capital startup using the cloud compelling don’t apply to medium or large
businesses; still, it’s illustrative to see why many startups getting funded today don’t
purchase a single server.

We’ll analyze case studies that are fresh startups as well as established small and
medium-sized businesses. At the end of this chapter, we’ll discuss a few large enterprises
that have found a way to use the cloud for high-value business benefits. As we discussed
in the last chapter, cloud providers are actively buying servers, power, and bandwidth
to provision data centers at an enormous scale. Let’s now focus on the implications
of this large-scale build-out as we look at the economics for the consumers of cloud
computing.

3.1 The economics of cloud computing
Cloud computing has the ability to change the economics of IT. It changes the ratio
between capital expenses (CAPEX) and operational expenses (OPEX) because of its
pay-only-for-what-you-use principles. Let’s start with an overview of various IT deploy-
ment models and then apply them to the specific example of a small-scale e-commerce
application. This will provide you with a baseline understanding of the costs and trade-
offs that may make one solution better than another for a given situation.

CAPEX and OPEX
CAPEX are expenses that create future benefits. When a business spends money
to buy fixed assets, it incurs a capital expenditure. Accounting adds a capital
expenditure to an asset account (capitalizing it). Typically, CAPEX requires a large
up-front investment to be amortized (written down) as its value decreases over time.
The initial CAPEX purchase can require a large cash outlay—one reason startups are
avoiding these purchases altogether.

OPEX is an ongoing cost for running a product, business, or system. It’s a day-to-day
expense akin to costs, such as sales and marketing, and as such, it can much more
easily be increased or decreased as business needs dictate. This isn’t possible with
CAPEX because you’ve already purchased the equipment.

3.1.1 Traditional internal IT vs. colocation vs. managed service vs. cloud model

In this section, we’ll compare and contrast the economics of the four common models
for setting up and managing IT for an enterprise: traditional internally managed IT,
colocation, managed service, and the newest—the public cloud model.

TRADITIONAL INTERNAL IT

In the traditional internal IT model, or zero-outsource model, all aspects that constitute
an IT application or service are purchased and managed using internal resources.

52 CHAPTER 3 The business case for cloud computing

The most common form is office IT infrastructure. In many offices, an internet con-
nection is provisioned from an ISP and connected to the internal network via a
router. This internal network is then provisioned with firewalls, switches, central file
and print servers, desktop computers, and perhaps a wireless network and laptops.
Internal IT purchases, installs, and operates all this equipment as well as general
office software. IT for more specialized business applications can be handled in the
same manner, with custom or packaged applications that are loaded onto hardware
provisioned for that purpose.

You can also deploy applications for external audiences, such as a corporate website
in a traditional IT model. Depending on the scale of such an application, it can
either share the network connection (typically on a separate VLAN to isolate it from
internal traffic for security reasons) or be provisioned with its own dedicated internet
connectivity and an isolated network.

COLOCATION

Another possible model for deploying an application is within a third-party data cen-
ter, otherwise known as a colocation facility. In this model, the company is still respon-
sible for purchasing the server hardware and developing or purchasing the required
software for running the application. The colocation facility provides that third party
with power, cooling, rack space, and network connectivity for their hardware. The co-
location facility typically also provides redundant network connectivity, backup power,
and physical security.

Colocation services are typically purchased as annual contracts with an initial service
fee and monthly charges based on the amount of rack space (usually bundled with a
specified allocation of power) and committed bandwidth. For hardware housed in
facilities that aren’t in close proximity to a company’s IT resources, you can purchase
what some call “remote-hands” capability in case a manual intervention is required on
your behalf.

MANAGED SERVICE

In the managed-service model, in addition to outsourcing the core infrastructure,
such as power and network connectivity, the company no longer purchases server
and networking hardware. The managed-service provider rents these to the com-
pany and also takes on the responsibility of managing the hardware systems and
base operating system software. In some cases, the provider also rents standard soft-
ware such as databases and rudimentary DB management services as part of their
service offering.

Similar to the colocation scenario, contracting with a managed-service provider
typically involves at minimum an annual commit, with an initial setup fee followed by a
recurring monthly charge based on the configuration of hardware and software being
rented. In this model, bandwidth isn’t typically charged for separately; instead, you get
a standard allotment based on the number of servers for which you contracted. You
can also contract for ancillary services, such as backups. Typically, the charge is based
on the amount of storage required on a monthly basis.

The economics of cloud computing 53

CLOUD MODEL

Finally we get to the cloud model. In this model, as in the managed-service model, the
company outsources the infrastructure and hardware, but in an entirely different way.
Instead of dedicated hardware resources, the company utilizes virtualized resources
that are dynamically allocated only at the time of need.

You can think of this as the analog of just-in-time manufacturing , which brought
tremendous efficiencies to the production of goods. Instead of stockpiling large
inventories, manufacturers can reduce their carrying costs by having inventory
delivered just as it’s needed in manufacturing. Similarly, the dynamic allocation of
resources in a cloud service allows a customer to use computing resources only when
necessary. Servers don’t have to sit idle during slack periods.

The billing model for cloud services is aligned with this sort of usage profile, with
service provisioning often requiring no up-front cost and monthly billing based on the
actual amount of resources consumed that month. This may translate into significant
cost advantages over traditional deployment models.

3.1.2 A detailed comparison of the cost of deploying in different models

To get a clear idea of what drives costs in each deployment model, let’s study a specific
example. Let’s run a cost analysis of deployment for each of the models we described
in the last section and get a quantitative picture of what makes up the total bill. By look-
ing in detail at where the dollars and cents go, you’ll be in a position to understand the
kinds of applications for which a cloud model makes the most sense.

For our hypothetical example, let’s look at a small-scale e-commerce application.
For this discussion, let’s assume it has been designed as a three-tier system, with a front-
end web server, a middle-tier application server, and a back-end database. Because it’s
a small-scale system, let’s assume that one server of each flavor will suffice for handling
the web traffic you anticipate receiving; but for reliability reasons, because you wish to
minimize downtime, you’ll deploy a redundant pair of each infrastructure component
(physical or virtual; see figure 3.1). In the non-cloud deployment models, you’ll deal
with physical infrastructure that you either purchase (in the cases of an internal IT
or colocation model) or rent (in the case of the managed-service model). The main
hardware components of the system and their approximate purchase costs are as
follows:

■ 2 firewalls : 2 x $1,500 = $3,000
■ 2 load-balancers : 2 x $5,000 = $10,000
■ 6 commodity servers : 6 x $3,000 = $18,000

For simplicity, let’s ignore the various other ancillary pieces of the hardware infrastruc-
ture. Let’s also assume that you’re running using open-source software; we’ll ignore
the costs of such things as the operating system, the application server, and database
software.

54 CHAPTER 3 The business case for cloud computing

Small E-commerce Configuration

Linux/MySQL
DB Replicated
w/ hot standby

Database

Linux/Jboss
Business Rules
Active/Active

Linux/Apache
Presentation
Active/Active

Cisco LB
Active/Active

Cisco VPN
Active/Active

Figure 3.1 For redundancy , the e-commerce example configuration consists of a pair of each
functional component required to operate the application. The hardware chosen for the configuration
is rack mountable, commodity servers, and network gear. Except for the database, each component
is active; the DB is replicated with a hot standby. We chose a LAMP open source stack to simplify the
treatment of software costs.

INTERNAL IT DEPLOYMENT

As we discussed in chapter 1, a good way to look at the costs of a specific deployment
model is to examine the CAPEX and OPEX components separately. CAPEX is the primary
driver for the up-front cost of the application; but for financial planning purposes (cash
considerations aside), these costs depreciate over the lifetime of the equipment. OPEX, as
you’ll see here, are the operational costs related directly to the infrastructure. Generally,
there are also operational costs related to the human resources required to maintain and
operate the infrastructure.

The CAPEX in this internal IT example for your e-commerce application is the cost
of the hardware listed earlier: $31,000. Assuming a three-year lifetime for this gear, you
can calculate the attributed monthly cost by dividing the total by 36, giving a monthly
cost of $861. This is the monthly depreciated cost of the internal IT scenario. Table 3.1
summarizes this example.

Table 3.1 Internal IT cost calculation: assumes the existing data center, power, and bandwidth cost
nothing extra

Hardware

$3,000 Two firewalls

+ $10,000 Two load-balancers

+ $18,000 Six servers

= $31,000 Total CAPEX cost of hardware

÷ 36 Depreciated over three years (36 months)

= $861 per month

The economics of cloud computing 55

In the internal IT model, if there is adequate power, cooling, rack space, and bandwidth
to house the new gear for the application, there is no additional incremental cost to be
taken into account. But note that the boxes in the end do consume power, produce heat,
and require bandwidth to do work; you’re not getting something for nothing.

COLOCATION DEPLOYMENT

In the colocation case, you can assume the same CAPEX expense as in the internal IT
model. In the internal IT model, you ignore the ongoing OPEX cost associated with
running the application because you assume the cost is absorbed somewhere else. In
a colocation deployment, there is an ongoing OPEX cost for the rack space and the
bandwidth.

For this deployment, you should be able to get by with half a rack and, let’s say,
10 Mbits of bandwidth. You should be able to purchase this on an annual contract
for about $1,000/month. This yields a total monthly cost of $1,861/month for the
colocation model (see table 3.2).

Table 3.2 Colocation cost calculation: assumes CAPEX for hardware plus OPEX for the colocation
contract

Hardware Bandwidth

$31,000 Total cost of HW 10 Mbit contract

÷ 36 Months

= $861 per month + $1,000 per month

= $1,861 per month

You can think of the colocation example as a proxy for a cost-allocation model and
treat the two models as the same. This overestimates the cost for the internal IT case
when facilities exist to house it. But on the other hand, when new facilities need to be
provisioned, this model can be more financially advantageous.

MANAGED-SERVICE DEPLOYMENT

Next, let’s turn to the managed-service model. In this case, you’re in a pure rental
model . All of your costs are OPEX. A typical rental cost for the pair of firewalls is
$300/month and for the load-balancer pair is approximately $1,500/month. Each
of the six servers will cost approximately $1,000 per month, or $6,000/month com-
bined. This yields a total cost of $7,800/month. In a managed model, there is typically
a bandwidth utilization allocation of 500 GB/month per server. This is enough for
your e-commerce application, so there should be no additional charge for bandwidth.
There is also typically a one-time initialization fee equal to approximately one month
of service. Spreading that out over three years yields an effective monthly cost of
$8,017/month (see table 3.3).

56 CHAPTER 3 The business case for cloud computing

Table 3.3 Managed-service cost calculation: a pure OPEX expenditure for hardware rental and contract

Hardware Bandwidth

$300/month Firewalls 500 GB/server included

+ $1,500/month Load balancers $0 Additional charge

+ $6,000/month Six servers + $7,800 ÷ 36 Installation (once)

= $7,800 per month + $217 per month

= $8,017 per month

You can see a large disparity in the cost of a colocation deployment and managed ser-
vice deployment—approximately $6,200/month. The general argument for managed
hosting revolves around a value proposition that a savings in the model is inherent
because the $6,200/month difference is related to the savings realized from reduced
human resources to manage the infrastructure, which you don’t take into account in
these scenarios.

CLOUD DEPLOYMENT

Now that we’re finished discussing the traditional models, let’s press on and turn our
attention to the cloud. We’ll run through this model in more detail. As you’ll see, it’s
trickier and more challenging to run the analysis for a cloud deployment because
there are quite a few more moving parts. But running through this scenario will help
you understand the key factors that you must take into account to get a good estimate
of the cost of a cloud deployment.

As with the managed-service model, you’re now in a pure rental model , with the
primary difference being that you’re renting virtual capacity instead of dedicated
capacity. The first thing you need to do is figure out the configuration that’s analogous
to what you’ve been modeling in the world of physical infrastructure .

To calculate the cost of the deployment, let’s take a specific cloud provider—
Amazon—and use its pricing structure to provide a point of comparison. First, you
model the six servers that represent the (doubled) web servers, the application servers,
and the database servers. Server capacity is measured in terms of compute units , which
they define in terms of an equivalent physical hardware unit (see table 3.4).

Table 3.4 Amazon EC2 instance size equivalents

Size Memory Num EC2 compute units

(1 = 1.0-1.2 GHz 2007 Opteron CPU)

Storage Platform

Small 1.7 GB 1 160 GB 32-bit

Large 7.5 GB 4 850 GB 64-bit

Extra large 15 GB 8 1690 GB 64-bit

The economics of cloud computing 57

To model your $3,000-server boxes, choose Amazon’s Large Instance option . Large
instances can be used in a pure on-demand model with no up-front fee for $0.34/hr.
More economical options are available if you elect to pay an up-front fee. Because
you’re making calculations based on a three-year time horizon, choose an option that
allows you to lock down a price per large instance of $0.12/hr for three years; Amazon’s
reserved instance one-time fee is $1,400 but then gives you the per-hour charge of
only $0.12. If you plan to run the application 24 x 7, the monthly charge will be
$87.65 based on the average hours in a month being 730.48. When you add this to the
$38.88/month for the initial one-time fee amortized over 36 months, you arrive at a
total of $126.53/month for each large instance. Because you need six of these for your
deployment, that works out to about $759/month for the compute resources.

You also need to pay for bandwidth. In the colocation example, you purchased
an allocation of 10 Mb/s. Colocation bandwidth is typically charged in what is called
a 95th percentile billing model. Usage is measured in five-minute buckets over the
course of the month, and the bucket representing the 95th largest usage in Mb/s is
taken as the measured utilization for the month.

95th percentile billing model
Many providers of network bandwidth have adopted a method for charging known as
the 95th percentile billing model. Unlike most metered models, in which a certain
quantity of usage is measured over the billing interval (say, a month), in this model,
the charge corresponds to a measurement of usage near the peak for the month,
with the top 5 percent thrown out to remove extreme outliers.

To understand exactly how this works, let’s consider a 30-day month. To calculate the
monthly bandwidth usage, the network provider measures the amount of bandwidth
(in megabits consumed in each of the 8,640 five-minute intervals that make up the
month) and then identifies the 432nd largest (the 95th percentile of 8,640). It then
divides the Mb consumed by 300 seconds to find the megabits per second value.
The monthly bill is based on this quantity.

Cloud bandwidth is typically charged by counting the number of bytes transferred in a
given time interval and not by using a percentile billing method. To calculate the con-
sumption equivalent to the 10 Mb/s in a transit (pay-as-you-go) billing model, assume
that the 10 Mb/s was chosen as 4 times the average sustained bandwidth utilization,
meaning that the e-commerce application runs at an average bandwidth utilization of
2.5 Mb/s. This translates to 320 Kb/sec, which, over a month, translates to around 780
GB of transit. Inbound and outbound transits have different fees, with inbound transit
being much cheaper than outbound. Web traffic tends to be asymmetric, with requests
that are generally much smaller than responses. From the server perspective, the re-
sponse is outbound traffic. Again, for simplicity, model all the traffic use as outbound,
which means your result overestimates the cost. For outbound transit of less than 10 TB,
the per-GB transit cost is $0.17/GB, yielding a cost of about $135/month.

58 CHAPTER 3 The business case for cloud computing

The physical infrastructure for your e-commerce application includes a pair of
load-balancers. In a cloud service, load balancing is provided as a service, again in
a consumption model. The charge includes two components: enabling the service
($0.025/hr) and a bandwidth-related cost for the amount of data transferred
($0.008/GB). The cost, including bandwidth for load-balancing services, is
approximately an incremental $25/month.

The redundant firewalls in the colocation example allow for VPN access into the
e-commerce infrastructure for secure remote management of the application. Virtual
VPNs are also available from Amazon as part of the cloud service offering. The virtual
VPN allows for the creation of IPSec tunnels between your corporate infrastructure
and the application running in the cloud. The billing model includes a per-VPN tunnel
charge of $0.05/hr whenever the VPN tunnel is active, and an inbound and outbound
bandwidth charge at the same rates as regular bandwidth usage. In this example, let’s
assume that the bandwidth used in management is negligible in comparison to the
traffic coming into the e-commerce site. Additionally, for simplicity, let’s assume you
keep a VPN tunnel open to each of the six instances all the time, yielding an additional
$0.30/hr or an incremental $216/month.

Finally, you’d probably like to keep copies of your instances, of which you have
three flavors (the web server, the application server, and the database server) stored in
Amazon, and perhaps some additional backup storage, which you can generously size at
2 TB. The monthly cost for storage in Amazon’s Elastic Block Store (EBS) is $0.10/GB,
yielding an additional cost of $200/month. The fees for I/O into the EBS of $0.10
per 1 million I/O requests are additional. Let’s be conservative and add $100/month
related to I/O, bringing the total cost to $300/month for storage-related services.

Adding up all the monthly costs (the instances, the load balancer, the VPN, and
the associated bandwidth charges and storage), you get a grand total of approximately
$1,435/month (see table 3.5).

Table 3.5 Public cloud cost calculation: pure OPEX, based on resource consumption

Hardware + storage Bandwidth

$216/month Virtual VPN (firewall) 10 TB max outbound

+ $25/month Load-balancing service

+ $300/month Storage

+ $759/month Six large instances $135/month @ $0.17/GB

= $1,300/month + $135/month

= $1,435 per month

Now, let’s see how this compares to the other possible models. If you recall, the three
other models—internal IT (assuming existing space and power), colocation, and man-
aged services—yielded monthly costs of $861, $1,861, and $8,017, respectively. The costs
for the cloud deployment model sit roughly halfway between the internal IT and coloca-
tion models. The managed model is clearly in a different realm of cost. Note that this is
related to the additional management services provided in these types of offerings.

Where does the cloud make sense? 59

You may wonder about all the purported savings the cloud is supposed to offer.
Wasn’t this supposed to be the magic bullet , the super-cost-savings alternative? The
answer lies in how you set up the example. For a reasonably small application with
a fixed workload that needs to run 24 x 7 for three years, there is no compelling
reason today to use the cloud. If you have excess data-center resources you can
use, it’s more cost effective to run the application in an internal IT model—again,
noting that the example doesn’t count human resource costs. It turns out that the
assumptions used to build the model are suboptimal for a cloud deployment. It’s
interesting that even in this case, you achieve something near cost parity. One of the
key advantages of the cloud is the fact that you can use resources dynamically in an
on-demand fashion.

Several application characteristics tilt the economics in favor of the cloud model;
we’ll look at them in greater detail in the next section.

3.2 Where does the cloud make sense?
As you saw in the preceding example, a fixed-load model may have limited economic
advantage over a cloud deployment. In figure 3.2, you see the total cost for deploying
the original e-commerce example in each of the four models over time. The flat line
represents the internal IT model, meaning an initial spend. Let’s assume no ongoing
monthly costs, because in this model you’re consuming preallocated resources that al-
ready exist and are accounted for. In comparison, the cloud model requires less initial
cash outlay than the CAPEX in the internal IT case, and a full 18 months pass before
it catches up to the cost of the internal IT deployment.

Cumulative Infrastructure Cost ($K)

Internal IT

Colocation

Managed Service

Cloud

Month

$
K

350

300

250

200

150

100

50

0
363534333231302928272625242322212019181716151413121110987654321

Figure 3.2 The total cumulative infrastructure cost for the example e-commerce
application deployed in four different models. The internal IT model depicts a fixed
initial cost due to capital equipment purchase and the implicit assumption that the
organization is able to use existing operational resources allocated elsewhere,
including the human resources to manage the infrastructure.

60 CHAPTER 3 The business case for cloud computing

But certain application types are practically begging to be deployed in a cloud.
Let’s examine several of these and look at specific case studies for companies of
different sizes.

3.2.1 Limited lifetime requirement/short-term need

Applications needed for a short, well-defined period of time are good candidates for
a cloud deployment model. The main reason for this is the large up-front fixed capi-
tal cost for the hardware needed to run the application. Recalling the e-commerce
application , let’s assume you have an application that must run at exactly the same
scale as the original application, but which has a fixed lifetime of six months. You
require the same hardware resources and initial expenditure, but instead of realizing
value for it over the three-year depreciation cycle, you should calculate the cost of
the hardware for only that half-year interval, yielding an effective cost due to hard-
ware of $5,167/month.

A six-month term for colocation is somewhat harder to negotiate than a standard
one-year term, but let’s suppose you can negotiate a $1,500/month fee with an initial
$1,500 setup fee. Over the six-month term, this will translate into $1,750/month for
hosting. In this example, you have, for both the internal IT and colocation models, an
effective total cost of $5,167/month and $6,917/month, respectively.

What will it cost you in the cloud model? In the original example, you pay a one-
time charge of $1,400 to lock in a price of $0.12/hour per large instance for three
years. For an application you need for only six months, you can instead contract to lock
in the same price of $0.12/hour for only one year at $910 per large instance. Over the
six-month period, that amounts to a cost of $1,428/month for the instances plus the
same costs as the original example for the bandwidth, load-balancer, VPN, and storage.
This adds up to $580/month. The total cost becomes $2,008/month, which is clearly a
substantial savings compared to either the internal IT or colocation models.

3.2.2 Scale variability/volatility

In the last section, what drove the cost savings for the cloud deployment was the finite
time interval for which the application was needed. Let’s look at another application
characteristic where the scale and load variability requirement can make it advanta-
geous to deploy using a cloud model. Scale requirements for an application may vary
in several ways. Some types of capacity variability are predictable, and you can antici-
pate them. For example, the daily variations for financial or online trading applica-
tions that see the most traffic and hence require the largest amount of capacity are at
the open and close of the market. These applications typically see variations in traffic
load of 4X between the open and close and the low point of the day.

Another example is the seasonal variation seen by online e-commerce sites in
the days immediately following Thanksgiving, the traditional start of the Christmas
shopping season. For these e-commerce applications, peak capacity requirements can
be as much as 20X normal capacity requirements, as you can see in figure 3.3 for
Target.com.

Where does the cloud make sense? 61

Daily United States People
09/02/09- 02/28/10

Oct ’09

target.com

Max: 3.0M 11/29/09

global stats not yet available for estimated data

US
GLOBAL

Dec ’09Nov ’09 Feb ’10Jan ’10

Directly Measured Rough Estimate

1.2M

3.1M

2.5M

1.9M

1.3M

.7M

Rough Estimate

Figure 3.3 This chart shows the estimated daily number of U.S. visitors to Target.com as determined
by Quantcast (www.quantcast.com/target.com) over a one-year interval. As it does for many
e-commerce sites, peak utilization occurs predictably at the end of November, at the start of the
Christmas shopping season.

If you consider designing and building infrastructure in an internal IT or colocation
deployment model to handle peak capacity 4X or 20X normal capacity, you’re look-
ing at increasing the cost of the deployment by roughly the same factors. Granted,
you’ll gain some efficiency by purchasing larger volumes, but these gains are minimal
compared to the overall size of the difference in required investment to scale. At peak
utilization times, the entire infrastructure will be maximally taxed servicing the appli-
cation. At other times, it will be severely underutilized.

In the cloud model, you can manage predictable traffic peaks in a much more cost-
effective manner. You can bring additional instances online to handle the increased
load during the hours or days of the increased capacity. For example, if you require 4X
the normal capacity at 9:00 A.M., and at other times of the day only four instances are
needed, you can spin up 12 additional instances for the hour they’re needed and only
pay for the additional instances when they’re active.

Other scale variations are less predictable. Event-driven spikes in scale requirements
can hit with as little warning as a tsunami and have devastating effects on the operation
of the application. One example illustrated in figure 3.4 is the spike in traffic on the
TMZ.com website after they were the first to report the death of Michael Jackson on
June 25, 2009.

http://www.quantcast.com/target.com

62 CHAPTER 3 The business case for cloud computing

Daily Global People
10/27/09-04/21/10

4.0M

3.0M

2.0M

1.0M

0
Dec ’09Nov ’09

tmz.com Directly Measured

Embed

Max: 3.9M

Max: 290K

Max: 108K

Max: 187K

Max: 86.8K

Max: 2.9M

12/21/09

12/21/09

12/21/09

12/21/09

12/21/09

12/21/09

GLOBAL

CA

NL

GB

FI

US

Feb ’10Jan ’10 Apr ’10Mar ’10

Directly Measured Rough Estimate

1.7M

116K

4.3K

18.0K

1.1K

1.4M

Figure 3.4 This chart shows the estimated daily number of U.S. visitors to TMZ.com as determined by
Quantcast (www.quantcast.com/tmz.com) between 6/03/09 and 8/31/09. This is an example of an
event-driven spike in demand on 6/25/09, when TMZ.com was the first to report the death of Michael
Jackson.

If you have to rely solely on resources deployed in either an internal IT model or a
colocation model, you literally have no recourse but to try to weather out high-demand
periods. If you have the ability to use the cloud and can dynamically spin up capacity,
handling all the unexpected traffic will happen seamlessly.

3.2.3 Nonstrategic applications /low organizational value

The final example of a situation in which it may be economically advantageous to de-
ploy in a cloud model is when you’re dealing with applications that are commodities
and aren’t strategic to the business. Many tactical applications serve internal constitu-
ents within an organization that could be moved to a cloud deployment, resulting in
savings of scarce IT resources in an organization. A classic example is backup data stor-
age . Instead of wasting internal IT resources on maintaining a backup system, you can
use a cloud-based backup service . Because this is a core competency of the company
providing the cloud backup service, it can be done more efficiently and economically
by them than it can be by using internal IT resources. This can free up these resources
to work on projects that are generally more strategic to the business.

http://www.quantcast.com/tmz.com

Where does the cloud not make sense? 63

3.3 Where does the cloud not make sense?
Although many application types make a good case for deployment to the cloud, in
several cases you should pause before running down a cloud path. This isn’t to say that
these scenarios should never consider a cloud computing paradigm, but serious con-
sideration and planning are certainly wise if you want to proceed down this path.

3.3.1 Legacy systems

Cloud service providers have put together large data-center infrastructures built on
commodity hardware running commodity software. The sweet spot for deployment
on the cloud is applications designed to run on these sorts of hardware and software
platforms. Standard virtual instances are available loaded with operating systems such
as Linux and Windows, not HP-UX or VMS .

Legacy applications built some time ago on legacy or proprietary hardware
and software platforms would take an inordinate amount of effort to convert onto
a cloud platform. Instead of conversion, if the systems are near end-of-life and are
good candidates for the cloud, you should redesign and rewrite the applications from
scratch.

3.3.2 Applications involving real-time /mission-critical scenarios

One of the strengths of the cloud is access to a tremendous amount of computing
capacity without the carrying cost of all that hardware on your books. Real-time image
processing , as is necessary for processing MRI brain scans, is an example of this type of
application. This sort of real-time view of the brain is incredibly useful as a guide for
surgeons during an operation. But a cloud deployment for this type of application is
probably not the way to go.

Cloud services are at this time delivered on a best-effort basis , and the only recourse
for poor service availability is a refund of the service fee. Even assuming the cloud
service could perform flawlessly and deliver 100 percent uptime, the fact that the
application must rely on connectivity over the public internet makes it a questionable
proposition to try to run an application with extreme mission criticality (such as life
and death) and with stringent real-time constraints.

If you look at the sectors where SaaS businesses thrive, you’ll see that they’re
successful in providing services such as customer relationship management (CRM)
that are important to a business and need to be highly available, but where a glitch that
requires a browser refresh isn’t catastrophic. These classes of application too aren’t
amenable for an organization to attempt to deploy in a cloud model yet.

3.3.3 Applications dealing with confidential data

Another genre of application that requires caution when thinking about cloud de-
ployment models deals with highly sensitive or confidential data. For example, the
healthcare industry is careful about complying with privacy, as mandated by the Health

64 CHAPTER 3 The business case for cloud computing

Insurance Portability and Accountability Act (HIPAA). IT organizations have over the
years developed best practices, such as classifying the level of security required for dif-
ferent classes of data. If you’re contemplating migrating potentially sensitive informa-
tion , you must make sure you take as much care protecting that data as you do with
data in the internal IT infrastructure.

Let’s consider the problem of deleting confidential data. Typically, when data is
deleted from a disk it isn’t truly deleted, but only marked for deletion. When another
process needs to write data to the disk, it has the opportunity to write over the location
marked for deletion, thereby destroying the data. In the case of a disk that you own
or have direct control over, if simple deletion isn’t good enough, you can choose to
reformat the disk; or if that is insufficient, you can take an axe to the disk drive and
then throw it into an incinerator. But data stored in a cloud infrastructure is sitting
on a shared disk drive. You lose a degree of control over the disposition of the data.
You can attempt to delete a file, but you have no way to be certain the data is truly
destroyed.

3.4 Zero-capital startups
The emergence of the cloud has greatly impacted entrepreneurs (and their investors)
eager to start a new business. It has lowered the barrier of entry for innovation and
has leveled the playing field for new entrants who can now bring new software services
to market with little up-front investment. By unleashing large amounts of computing
capacity, it has enabled new classes of applications that previously only companies with
deep pockets could afford.

3.4.1 Then and now: setting up shop as startup ca. 2000 vs. startup ca. 2010

Entrepreneurs today face a different set of challenges than they did a decade ago, par-
ticularly those trying to set up a software service or online business. The main differ-
ence is how far a startup can get today without obtaining a large amount of capital to
fund their business compared to how far they could get in the past. Formerly, without
an external source of funding, a couple of founders might be able to dream up a new
application or service and start prototyping it on their desktop computers and then
load it up on a laptop to take in to demo to some angels or venture capitalists . If they
had a little more capital resource available, they might be able to purchase a handful
of servers, sign an annual contract for some colocation space, and then hope for the
best. If they either ran into a tough patch or had extreme success, they were severely
constrained: they had to look to external resources for capital to either keep the busi-
ness afloat or keep up with growing demand.

Today, the picture is entirely different. Entrepreneurs don’t have to stop at a
prototype or a demo application because they lack the capital necessary to launch the
offering. They can much more easily bootstrap the operation because the availability
of cloud services means there are no up-front costs such as hardware to buy or data-
center space to rent. They can have fully functional and operational businesses

 Zero-capital startups 65

online generating value. If the business idea isn’t that great after all, nothing is lost
except the sweat equity that went into putting the idea into practice. If, on the other
hand, the business takes off, the on-demand nature of provisioning cloud services
means that more instances can be brought online as needed so that costs only ramp
as usage (and, we hope, revenue) ramps. As a small organization, the startup has the
advantage of being nimble and able to react quickly to changing needs of the market.
Because of the availability of the cloud, some of the advantages a larger company may
have, because of its better access to capital, are reduced.

But the leveling of the playing field cuts both ways. The barrier to starting and
operating a business has not only been lowered for one, it has been lowered for all.
Many small competitors can enter a space; and without sustainable differentiation, such
as superior technology, better distribution, or service, the only means of competing
ultimately is price. For example, let’s explore the concept of load testing using the cloud
by looking at the open-source project Pylot . In a matter of minutes, you can launch
an instance, point it at a website, and run a load test. It isn’t a particularly big stretch
from that exercise to putting together a service for load-testing in the cloud by writing
some software for coordinating several instances and collecting and summarizing the
results. Several startups are trying to make a go of this, some with little or no external
funding and others with traditional venture backing. These startups face the challenge
of differentiating themselves with almost no intrinsic defensibility in their offering.
They must rely on better technology, service, or distribution to come out on top.

3.4.2 Is venture capital funding a necessity?

With the barrier to starting a software service or online business so greatly reduced,
you may ask whether all this leveling of the playing field has obviated the need for en-
trepreneurs to get funding from venture capitalists. As discussed previously, the main
change brought about by the cloud is the ability to get farther along before requir-
ing large amounts of capital. The cloud may obviate the need for some companies
to achieve scale without taking on external capital. But you must remember that the
capital cost of running an application infrastructure is only one of many aspects re-
quired to scale a business. To cite one example, the availability of cloud services hasn’t
reduced the costs of hiring people to market and sell products and services. In many
cases, in order to scale a business, you still need external funding.

The availability of cloud services as a possible deployment model allows an
entrepreneur to go farther in developing a business than was possible before. From
the venture capitalists’ perspective, this has the desirable effect that they can evaluate a
fully formed and realized idea that should theoretically reduce the risk for the investor.
After the idea has been executed and the business model demonstrated, it becomes
less of a risk. You may guess that such a reduction in risk means better terms and
higher valuations for prospective entrepreneurs looking for backing; but alas, this
generally isn’t the case. Other entrepreneurs are maturing their businesses in the same
environment, meaning the bar is raised for all uniformly to obtain financial backing as
the market for available capital adjusts to the changing quality of deals.

66 CHAPTER 3 The business case for cloud computing

In the next two sections, we’ll look at a couple of startups that are using the cloud
in new ventures. We’ve selected them for discussion from the finalists in the Amazon
AWS Start-Up Challenge as thematic representations of the kinds of new businesses
being launched using the cloud. The first is a business that uses the large on-demand
compute capacity to enable a business that previously wasn’t possible for a new market
entrant because of the capital outlay that formerly would have been necessary. The
second is a service utilizing the on-demand flexibility of the cloud to build a SaaS
application for a specific targeted niche.

Amazon AWS Start-Up Challenge
The Amazon AWS Start-Up challenge is an annual competition that has been held
since 2007 by Amazon to promote innovation on the company’s cloud. Entry to the
competition is open between July and September, with several finalists chosen in
November. The final round is held in December, with each finalist presenting to a
judging panel that includes representatives from venture capital firms. The winner
of the contest gets $50,000 in cash and $50,000 worth of credit for Amazon AWS
cloud services.

3.4.3 Example 1: FlightCaster—airline flight-delay prediction

FlightCaster was one of seven finalists in the AWS Start-Up Challenge in 2009. Flight-
Caster is a startup whose service targets business travelers. The FlightCaster service
predicts whether a flight will be delayed by comparing real-time conditions with his-
torical data.

Users of the service enter flight numbers for upcoming flights using the FlightCaster
Blackberry or iPhone application on their smartphone. It uses a patent-pending
algorithm and processes large volumes of data consisting of information about the
weather and statistics on the departure and arrival times of all flights over that time
frame. FlightCaster updates the probability for delay continuously for the flight
selected and assesses the likelihood that the flight will be on time or will be delayed
for an hour or more, by matching current conditions to situations in the past. Advance
warning allows travelers to anticipate and plan around delays by reserving alternative
itineraries before delays are officially announced. This gives travelers the potential for
more available options.

Without the cloud as a deployment option, this business would be difficult to start
up, because it would need a large amount of capital to store the data for analysis and
to make the calculations to provide the service.

3.4.4 Example 2: business intelligence SaaS

The Grand Prize winner of the 2009 AWS Start-Up Challenge was GoodData , which
is a business intelligence (BI) SaaS provider. GoodData is an easy-to-use service for

Small and medium businesses 67

businesses that need BI to help understand data about their business, so they can make
better decisions.

The deployment of a traditional BI solution in an enterprise can run in the millions
of dollars for software and hardware and can take several months to implement.
Several business services (CRM, payroll, and travel and expense [T&E] management)
have been offered in a SaaS model. But BI as SaaS is a relatively new concept, perhaps
because, before the cloud, it wasn’t economically feasible. BI as SaaS requires more
storage and processing than other, more traditional, SaaS businesses.

Using the cloud to run its BI service allows GoodData to support large-scale
compute and data-intensive analytics without the need to scale up its own internal
infrastructure. Elasticity allows GoodData to use resources only when customers need
them to support their BI needs. GoodData can in turn pass these savings on to its
customers by offering a relatively inexpensive alternative. As a SaaS solution, potential
customers can evaluate GoodData for free immediately after signing up for the
service, via a web interface. The service can be purchased in an on-demand model for
$500/month.

3.5 Small and medium businesses
In the case of a startup venture, the discussion of cloud utilization revolves around
companies and applications that are technology-oriented, because those are the kinds
of companies for which the cloud has particular relevance. When we turn to small
and medium businesses, millions of different companies fit this description. Unlike
the startups discussed earlier, a cloud implementation isn’t necessarily core to their
operation. For many of these businesses, running an application in the cloud may be
as relevant as landing a spaceship on the moon.

Let’s focus on three specific examples, each with a varying degree of technical
complexity and varying applicability to small and medium businesses in general. A
general theme will emerge: such businesses can use cloud services to give a company
greater flexibility and position the company for growth through more efficient use of
capital and IT resources.

3.5.1 Low-tech example: corporate website

Nearly all businesses today have a corporate website . It may be as simple as a hand-
ful of pages with basic corporate information, or it may be an elaborate application
designed to market a company’s products and services and generate leads for its sales
force. Corporate websites typically begin their lives on a shared hosting service, where
they may reside on a simple Linux server alongside hundreds or thousands of other
corporate websites for a modest fee around $20/month.

As the corporate website grows in popularity, traffic increases, and the importance of
the website to the business grows commensurately until it needs to migrate elsewhere.
Before the advent of cloud computing, you could go to a colocation type scenario
with a dedicated server for the website (typically about $200/month) and manage

68 CHAPTER 3 The business case for cloud computing

it yourself. Alternatively, you could use a managed-service offering (typically around
$800/month). In the beginning, this was overkill because of wasted capacity—the
website’s volume could be handled safely on a shared server and hardly taxed the
dedicated servers. At the other extreme, when the site started growing and exceeded
the capacity of the single server, more servers were needed, each at an incremental
cost of $200/month or $800/month, depending on the chosen deployment model.

The cloud model provides a more economical choice, because you can rent a small
virtual CPU for about a nickel an hour or $36.50/month. When a company exceeds
this capacity, it can add and scale capacity as needed, dynamically. The system deployed
in the cloud is able to start small, at an affordable price, while still having the flexibility
to grow as and when needed at a moment’s notice.

3.5.2 Medium-tech example: backup and file-storage systems

A slightly more ambitious approach a small to medium business can take is to begin
moving some of its traditional IT services to the cloud. One common IT task is the
backing up of the corporate file-share systems. Organizations often do this using a
tape backup system at regular intervals. They can move these backup tapes to a remote
location so that if the office location that contains the original is destroyed, the data on
the backup can be recovered. The importance of remote backups for organizations of
any size can’t be overemphasized. In the event of a disaster , it can mean the difference
between staying in business and going out of business.

Because the cloud is remote and located in an offsite third-party location, it’s
naturally suited to offsite backups. An initial copy of the data to be backed up can be
sent to the cloud provider on physical media. From then on, differentials can be sent
over the internet, providing a safe, offsite copy of the data.

From using the cloud as a storage location for backups, it’s only a small step to using
it as the primary file-storage system for a corporate document-management system.
As mentioned in section 3.3.3, you must take care if the data is extremely sensitive
or subject to compliance or regulatory controls; but otherwise it’s possible to store
confidential corporate data in this matter. More than one million users in corporations
of all sizes are storing confidential CRM data on the cloud using Salesforce.com .

3.5.3 High-tech example: new product development

The final example relates to a small to medium business that develops software, either
as a product (an independent software vendor [ISV]) or a service (a SaaS provider).
These types of companies can use cloud services as a part of a cost-effective and flex-
ible product-development process.

The fact that cloud services can be provisioned on an on-demand basis means that
companies can develop and test products without the capital expense of provisioning
new hardware. For an ISV developing enterprise software, for example, the cost of a
quality assurance (QA) test lab to verify the functionality of the solution can be greatly
reduced by using the Amazon cloud. A virtual test lab running in both Windows and

Cloud computing in the enterprise 69

Linux environments, and testing compatibility with different web and application
servers, and different database environments, such as Microsoft SQL Server, MySQL,
Oracle, and even DB2, is possible with zero up-front expense. Once the testing cycle is
complete, there’s no ongoing expense associated with the QA environment, and it can
be fired up when needed on the next development cycle.

For SaaS providers, where the ultimate offering being developed is a service,
gains aren’t limited to the development and testing cycle. After a new product is fully
developed and tested, the provider can directly launch it on the cloud with much less
financial exposure than was previously possible. When the new product has proved
itself, the company can decide whether it’s advantageous to continue to serve it for the
cloud, or whether it should be brought in-house for more control.

3.6 Cloud computing in the enterprise
As you’ve seen in the last two sections, startups and small and medium businesses are
using cloud computing to great advantage. In many cases, these smaller organizations
either have no other feasible choice to deploy their applications other than on the
cloud, or to do so doesn’t make business sense because of the clear cost advantage of
the cloud solution. Smaller organizations tend to be less fettered by constraints and re-
quirements around security, availability, and reliability. They also usually have less for-
malized processes and procedures in place to govern the deployment of applications.

It’s probably not surprising that larger enterprises have been less aggressive in
moving to the cloud. Unlike in smaller organizations, their IT departments must
operate under stricter rules, guidelines, and procedures. Many of the applications they
deploy and operate are mission critical in nature and hence have stringent security and
performance requirements. Furthermore, because of the size of the organizations,
they often have more resources available and hence more choices. Some larger and
more advanced organizations may be evolving toward a cloud-like deployment model
after several years of experience virtualizing their data-center resources. We’ll look at
these internal or private clouds in more detail later. For now, let’s look at a few case
studies of successful initiatives by large enterprises using public cloud services.

3.6.1 Eli Lilly: large data set, high-compute scenarios

As discussed earlier, cloud services offer a new capability to access large amounts of
computing capacity in an on-demand fashion. It’s therefore not surprising that one
of the first tangible scenarios of successful use of public cloud services comes in
this form.

Eli Lilly is a global pharmaceutical company that requires vast amounts of
computing resources as part of its drug development R&D process. In late 2007, the
IT organization within Eli Lilly was frustrated at its inability to provision computing
capacity for its scientists. According to David Powers, a long-time associate information
consultant at Eli Lilly, it took more than 50 days to get a new machine up and running
within existing corporate processes.

70 CHAPTER 3 The business case for cloud computing

For a pharmaceutical company, time literally is money. When it files a new drug
patent, the 20-year clock begins ticking. During that time, the drug must pass through
several stages of clinical trials before being approved by the FDA. The faster the company
can get a drug through that process, the longer it can market the drug exclusively and
hence enjoy significant margins. The Eli Lilly IT team took the plunge and decided to
use the Amazon AWS cloud as a platform for high-performance computing. They were
able to set up a 64-node Linux cluster that could be brought online in only 5 minutes;
formerly, it took 100 days for them to bring such a cluster online. The IT team made
this resource available to hundreds of scientists within Eli Lilly and in the future hopes
to extend its use to research partners for other projects.

3.6.2 Washington Post: deadline-driven, large compute problems

The next example is similar to the last in that it involves a problem that requires a vast
computing infrastructure to perform. In this case, The Washington Post was looking for
a fast way to make public the contents of Hillary Clinton ’s daily activity record from
1993–2001, the period that President Bill Clinton was in office. In response to a Free-
dom of Information Act request, the National Archives released this data at 10:00 A.M.
on March 19, 2008, in the form of a 17,481-page low-quality, nonsearchable PDF. Peter
Harkins , a senior engineer working at The Washington Post, used PDF-reading OCR
software and devised a procedure to process the document at a rate of 1 page every 30
minutes. He moved his procedure over to the cloud, fired up 200 EC2 instances, and
was able to process the entire document in 9 hours.

Harkins immediately made the data available to reporters, and The Washington
Post made the entire searchable document available to the public 26 hours after its
release.1 The speed of accomplishing this task was phenomenal; but perhaps even more
impressive is the fact that the 1,407 hours of virtual machine time cost the princely sum
of $144.62. As a point of comparison, photocopying those pages at $0.05 a page would
cost more than six times more: $874.05.

3.6.3 Virgin Atlantic: online web presence and community

The last enterprise example is somewhat different from the previous two; it’s more
similar to the cloud usage we discussed in section 3.5. It represents a shift from project-
oriented enterprise usage models to one in which the enterprise relies on the cloud
infrastructure day in and day out to provide services.

Virgin Atlantic launched a new travel portal called Vtravelled.com and deployed it
completely on a cloud infrastructure. It’s a conventional website application that takes
advantage of load balancing for improved reliability, performance, and scalability, as
well as content delivery network (CDN) services provided by Amazon CloudFront to
improve global service delivery. Because it’s deployed in a cloud model, there was no

1 Available at http://projects.washingtonpost.com/2008/clinton-schedule.

http://projects.washingtonpost.com/2008/clinton-schedule

 Summary 71

up-front capital expenditure, and the number of resources can be dialed up or dialed
down in response to traffic patterns that may be driven by promotional campaigns.
This deployment of a mainstream application by a large enterprise serves as a portent
for the general adoption of cloud services by enterprises for everyday computing
applications.

3.7 Summary
Cloud computing represents both a technology and an economic shift. This chapter
introduced four common deployment models and examined the costs associated with
operating a hypothetical e-commerce application in each. You saw that when the ap-
plication workload is constant and an organization has existing internal data-center
resources that can be used at no additional incremental cost, it can be more economi-
cal to deploy an application that way. The balance tips in favor of a cloud deployment
model in cases where there are variations in the expected workload that the applica-
tion must handle, or in cases where the application is needed for a short, fixed amount
of time. We also looked at the application of the cloud by organizations of various sizes,
from startups to large Fortune 500 enterprises.

Having reviewed the business and economic implications of cloud computing, and
when utilizing such an approach may be appropriate, we’re now ready to look at issues
of security in cloud computing. In the next chapter, we’ll explore why this and other
factors are driving some organizations toward private clouds. We’ll also discuss how
the trend toward a new concept called a virtual private cloud—that runs on top of
the public cloud—may bring the best of both worlds together into a secure cloud
computing solution.

4

72

Security and the
private cloud

This chapter covers
■ Learning about information security in the public cloud

■ Considering the deployment of private clouds

■

Getting to know virtual private clouds

Using private clouds to your advantage

■

In the previous chapter, you learned about the economics of cloud computing—
or, more specifically, the economics of public cloud computing. You saw that for
startups, the use of the cloud can often be game-changing, enabling entrepreneurs
to launch services that were never before possible. They can create new businesses
with very little capital. Small and medium-size enterprises can use the public cloud
for applications that aren’t necessarily strategic to their business. These can be
moved into the cloud to great advantage. Large enterprises—with a few notable ex-
ceptions, and mostly for their nonstrategic uses—are much more reticent to move
to the cloud, due to security concerns. In this chapter, you’ll learn how they can
overcome these issues and still benefit. You’ll see two alternatives to public clouds:
private clouds and virtual private clouds .

Information security in the public cloud 73

Private clouds (and virtual private clouds) are a hot topic in IT; a wide range of
opinions exists about whether private clouds fit into today’s corporate IT strategy . Cloud
computing technologies, in general, are evolving rapidly with private cloud computing
in particular undergoing a rapid metamorphosis. A classic (and humorous) example
is our research for this chapter. We spent a couple of days experimenting and putting
together a private cloud implementation from open source. When we got around to
writing the chapter several weeks later, we found that some folks had put together an
even simpler procedure. What took us two days only a couple of weeks earlier could
now be done in a matter of hours!

Some industry analysts, such as the Gartner Group, predict that private cloud
spending will soon exceed public cloud spending. Consultancy McKinsey, on the other
hand, goes as far as saying that there’s no such thing as a private cloud and that by
focusing on virtualization, you can improve the efficiency of internal IT operations
and increase the utilization of existing resources to the point where you can beat the
economics of the public cloud. We disagree with this extreme view.

Security concerns and the economics of existing data centers are the two drivers
toward private clouds. Both will eventually go away; the tenure of real (versus virtual)
private clouds is temporary. Security is the hot-button du jour, so you need to know the
facts about information security. If you aren’t familiar with the technical underpinnings
of information security, please refer to this book’s appendix, which provides a review
of the key concepts.1

4.1 Information security in the public cloud
Information security is about keeping data secret. If you want to keep data perfectly
secret, you must never let it out of a vault. But you need to process the data in some
way, and that means it has to come out of the vault and be used by some application
and combined with other data to produce useful results. Security has a funny way of
making people issue dogmatic statements. You’ll hear declarations such as “My sensi-
tive corporate data will never be in the cloud” repeated all the time. Let’s begin this
section with an examination of why security concerns are slowing cloud adoption.

4.1.1 Security concerns slowing cloud adoption

The most significant difference between cloud security and traditional infrastructure
security stems from the sharing of infrastructure on a massive scale. Users spanning
different corporations and trust levels often interact with the same set of compute
resources. Layer on top of that the dynamic and transient aspects endemic to a public
cloud, the desire to continually load-balance and optimize for performance, energy,
availability, and other SLA-level goals, and the problem becomes further complicated,
creating more opportunities for misconfiguration and malicious conduct. When IDC

1 One of the authors has an authoritative book on this topic: Securing Web Services with WS-Security by Jothy
Rosenberg and Dave Remy , Sams, 2004.

74 CHAPTER 4 Security and the private cloud

polls enterprise IT executives about their concerns about cloud computing, security
continues to be their number-one concern and impediment toward moving to the
cloud. You can see the IDC survey’s results from 2009 in figure 4.1.

Current cloud offerings are public (rather than private) networks, exposing the
system to more attacks. You also have requirements for auditability from regulations
like Sarbanes-Oxley (SOX) and the Health Insurance Portability and Accountability
Act (HIPAA) for affected data to be moved to the cloud.

We believe that no fundamental obstacles exist to making a cloud-computing
environment as secure as the vast majority of in-house IT environments. You can
overcome many of the obstacles immediately with well-understood technologies,
such as encrypted storage , virtual local area networks (VLANs) , and standard network
security tools, such as firewalls and packet filters . For example, encrypting data before
placing it in a cloud may be even more secure than using unencrypted data in a
local data center. A healthcare company with access to sensitive patient records and
healthcare claims successfully used this approach when moving its HIPAA-compliant
application to a public cloud.

Similarly, auditability can be added as an additional layer beyond the reach of the
virtualized guest operating system (OS) , providing facilities more secure than those
built into the applications themselves and centralizing the software responsibilities
related to confidentiality and auditability into a single logical layer. Such a new feature
reinforces the argument that cloud computing can and will provide more security than
any one corporation will know how to implement or can afford.

Security 74.6%

63.1%

63.1%

61.1%

55.8%

50.4%

50.0%

49.2%

44.3%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Performance

Availability

Hard to integrate with in-house IT

Not enough ability to customize

Worried on-demand will cost more

Bringing back in-house may be difficult

Regulatory requirements prohibit cloud

Not enough major suppliers yet

Figure 4.1 Results of IDC’s 2009 annual survey of enterprise IT executives regarding
concerns about adopting cloud computing for their core applications. Security has
remained the top concern for the past three years.

Information security in the public cloud 75

A related concern is that many nations have laws requiring SaaS providers to keep
customer data and copyrighted material within national boundaries . Similarly, some
businesses may not like the ability of a country to get access to their data via the court
system; for example, a European customer may be concerned about using SaaS in the
United States, given the USA PATRIOT Act .

Let’s begin by examining current state-of-the-art public cloud data-center security.
In the next three sections, you’ll learn about data-center security, access-control
measures, and network and data security applied to public clouds.

4.1.2 Major cloud data center security

Security of the major cloud data centers begins with the physical security of the data
centers that providers use to house their computing equipment.

PHYSICAL SECURITY

Companies such as Google , Microsoft , Intuit , Yahoo! , Amazon , and many other huge
data-center operators have years of experience in designing, constructing, and oper-
ating large-scale data centers. They have applied this experience to their companies’
cloud platforms and infrastructure. The state of the art in physical security is to house
these data centers in nondescript facilities (security by obscurity) with extensive setback
and military-grade perimeter control berms as well as other natural boundary protec-
tion. Frequently, these buildings are in residential neighborhoods with no signage or
markings, making them extra obscure. Physical access is strictly controlled both at the
perimeter and at building ingress points by professional security staff utilizing video
surveillance , state-of-the-art intrusion detection systems, and other electronic means.
Authorized staff have to use two-factor authentication no fewer than three times to ac-
cess data-center floors. Typically, all visitors and contractors have to present identifica-
tion and sign in. They’re continually escorted by authorized staff.

Cloud companies are going way beyond what even financial services company data
centers do by putting their servers into fortified bunkers that easily outdo anything
seen in spy movies. Salesforce.com ’s Fort Knox data center boasts round-the-clock
security patrols, five levels of biometric hand-geometry scanners , and even man-trap
cages designed to spring on those without the proper clearances. Figure 4.2 shows
some of these physical security measures.

Figure 4.2 Physical security at state-of-the-art data centers includes perimeter security (razor wire),
biometric authentication (palm reader), and access control (man trap).

76 CHAPTER 4 Security and the private cloud

Another important policy, employed to avoid the kind of internal attacks that have
become a problem in many large organizations, is to provide data-center access and
information to employees only if and when they have a legitimate business need for
such privileges. They also routinely log and audit all physical and electronic access to
data centers by employees. Although all these measures could easily be employed by
any organization, the point is that they aren’t typical and yet they matter as SAS 70
certification asserts.

SAS 70 CERTIFICATION

Most public cloud providers have achieved the Statement on Auditing Standards No.
70: Service Organizations, Type II (SAS 70 Type II) certification. This and similar cer-
tifications provide outside affirmation defined by the American Institute of Certified
Public Accountants (AICPA) that the provider has established adequate internal con-
trols and that those controls are operating efficiently.

The SAS 70 audit isn’t a spot check: it requires six months of evidence collection in
a steady state before the actual audit process may begin. The audits can take up to six
months and are typically done once per year. They’re expensive and intrusive and can
be a big problem for any but the largest data center operators.

Many recent regulations require SAS 70 audits on the managed services and facilities
where applications affected by those regulations run. For example, the Gramm-Leach-
Bliley Act (GLBA), SOX , and HIPAA all now require SAS 70 audits. SOX in particular
has heightened the focus placed on understanding the controls over financial reporting
and identified a Type II SAS 70 report as the only acceptable method for a third party
to assure a service organization’s controls.

Physical security is strictly the domain of the cloud provider, which can vouch for its
compliance through the continuous maintenance of a certification like SAS 70. Access
control is the joint responsibility of the provider and its users. Let’s examine this area
of information security next.

4.1.3 Public cloud access control measures

After physical security, the next most important security measure is to control who can
access the cloud, particularly your portion of the cloud. If this breaks down, not much
else can protect you. If the bad guys can access your servers, spin up new servers, and
start up applications, you’ve pretty much lost. To understand how cloud access control
works, let’s walk through the process Amazon Web Services (AWS) uses to set up ac-
cess control at the initial sign-up. Their process is almost identical to that of Microsoft
Azure and the other cloud providers. As with most identification and authentication
procedures, this depends on a multilevel process that layers one type of shared-secret
question/answer interaction on top of another. Your credit card used for payment is
the first shared secret information.

BILLING VALIDATION

E-commerce sites and others commonly use billing validation for authentication to
make sure you’re the legitimate holder of the credit card you’re trying to use for a

Information security in the public cloud 77

transaction. Because the billing address isn’t printed on a credit card, entering the cor-
rect billing address is using a shared secret . This is the first step in making sure you’re
an authorized individual setting up cloud services.

IDENTITY VERIFICATION VIA PHONE (OUT OF BAND)

Using a completely separate database for the next level of verification goes a long way
toward making sure you are who you say you are. An out of band (meaning not using the
same browser interface being used for sign-up) mechanism makes this a strong form
of verification because it requires that you use something you possess (the physical
phone). The shared secret is the phone number. By asking you to enter a PIN gener-
ated randomly through your browser, the cloud provider can verify that the individual
sitting at the browser is the same one who is on the phone. Figure 4.3 shows the AWS
screen before you enter the PIN .

Credentials used to sign in must be provided next.

SIGN-IN CREDENTIALS

You’re in complete control of your sign-in credentials , and the password needs to be
strong. Alternatively, you can use multifactor authentication , such as RSA ’s SecurID .
This is highly recommended because it has been shown that multifactor authentica-
tion is much stronger than single-factor, particularly when the single factor is password-
based. You can see the specification of sign-in credentials using a simple password in
figure 4.4.

You use sign-in credentials each time you want to access the web services for the
cloud. But on every interaction with the service through its API, you have to provide
an authentication key.

Figure 4.3 The AWS screen during the identity verification out-of-band phone
call asking the user to enter a PIN. This mechanism verifies that the user of
the browser doing sign-up and the user receiving the phone call are one
and the same individual whose billing validation has already been completed.

78 CHAPTER 4 Security and the private cloud

ACCESS KEY S

Every API call to do anything with the cloud requires an access key. As part of the ini-
tiation process, you’re given a generated secret key . (Actually, it’s better to generate
the key pair locally on your machine and provide the public key half of that pair back
to the cloud providers, thus protecting the private key half all the more.) This key is
then used in each API call to indicate that the initiator is legitimate. It’s critical that
you don’t share this secret key. As the screen in figure 4.5 says, frequent rotation of this
secret key is considered best practice.

X.509 CERTIFICATES

X.509 certificates are based on the idea of public key cryptography , which we discuss in
the appendix to this book. Specifically, X.509 certificates consist of a certificate file
and a companion private key file. In the X.509 certificate itself is the public key and
related metadata. The X.509 and its incorporated public key aren’t secret; they’re
included in each service request. The private key is used to calculate the digital
signature to include in a request to the service. The private key is a secret and must
never be shared.

Figure 4.4 The AWS step of providing sign-in credentials. In this case, it’s
single-factor, password-based. But multifactor authentication is highly
recommended, such as using a time-based hardware token (something
you have) in addition to a password (something you know).

Figure 4.5 A secret key is generated by the service for your use in all API calls.
Each call requires that this key be included so the service can validate that the
call is from a legitimate user.

Information security in the public cloud 79

The cloud provider typically has a way to generate a certificate for you. This is never
the most secure approach because they possess your private key, if only for a moment.
Despite assurances that they never retain the key, you can’t be 100 percent sure.

Let’s see how to use the X.509 in service requests. When you create a request, you
create a digital signature with your private key and include it in the request, along
with your certificate. When the provider gets the request, it uses the public key in the
certificate to decrypt the signature and confirm that you’re the request sender. The
provider also verifies that the certificate you provide matches the one on file. Figure 4.6
shows the results of the process where we had AWS generate the certificate (again, not
recommended for best security).

The third and final type of access credentials is the key pair.

KEY PAIRS

The key pair constitutes the most important access credential for dealing with instances
in the cloud. You have to use different key pairs for each service. You use a specifically
assigned key pair each time you launch an instance. The key pair ensures that only you
have access to the instance. You can’t replace a particular key pair, but you can have as
many as you like. You can use one key pair for all your instances or one pair for a par-
ticular type of instance—you get to decide how you want to organize access. You must
not lose the private key for an instance because then you could no longer access it.

Amazon will create the EC2 key pair through the AWS Management Console if you
chose not to generate them yourself on the local machine where the private key will
reside. Figure 4.7 shows the fingerprint for the public key retained at AWS after a key
pair is generated. AWS doesn’t retain the private key—it’s to be kept secret by you.

Figure 4.6 The results of having the provider generate the X.509 certificate.
A private key file was downloaded, and then the certificate file was as well.
The provider doesn’t retain the private key. But the provider does have it for
a moment, and it’s downloaded over the public internet to the browser,
making this an insecure process. It’s better to get a certificate from a
Certificate Authority and upload the private key back to the cloud provider
while retaining complete control over the private key.

80 CHAPTER 4 Security and the private cloud

Figure 4.7 The ways key pairs are generated and managed through AWS’s
Management Console. The public key is retained at AWS, whereas the private
key isn’t. You can download it to your machine for secret storage.

Public cloud access-control measures such as those you’ve seen outlined for Amazon’s
AWS (which are almost identical to those used at Microsoft’s Azure and other public
clouds) are of vital importance to maintain the identity, authentication, and authoriza-
tion of the users of the cloud at all times. As long you keep the secret key strictly secret
and your passwords are of high strength and follow all other best practices, this pro-
vides a high level of security and control over the creation of instances and other cloud
services. Now, let’s look at how network and data security work in public clouds.

4.1.4 Major cloud network and data security

Of high concern to most potential cloud users is protection of their data. The recent
announcements of virtual private clouds (see section 4.3) and the ability of cloud pro-
viders to segregate data are already allaying many fears. But the secret is that already,
the cloud is more secure than most data centers—and again, this gap will widen over time.

Using the cloud already has security benefits. Centralizing data in the cloud as
opposed to having it distributed all over the organization means less leakage because
there’s less data on people’s laptops. When data is centralized, it’s easier to monitor
access and usage. On the other hand, if there is a breach, having data centralized can
mean a much more comprehensive and damaging data theft. With the number of
data thefts of significant size and publicity at an all-time high, turning over the means
to protect data to the cloud experts is still a much safer bet as thieves become more
sophisticated.

If an incident occurs, the cloud provides a faster and more comprehensive means of
response. Acquisition time of forensic data is low. Downtime during the investigation is
low due to the availability of so many resources not tainted by the breach. Finally, cloud
providers are providing more and better built-in verification. For example, Amazon ’s
S3 does an MD5 hash (a fast cryptographic algorithm to validate that the original data
is intact and unmodified) on all stored S3 objects.

Information security in the public cloud 81

All of this leads to the conclusion that data centers run by individual corporations
for their use will become even more expensive and less reliable compared to the
biggest cloud providers. Meanwhile, the cloud will become cheaper, more secure, and
more reliable. Corporations will finally get over their reticence and will move project
after project to the cloud, keeping fewer in their own data centers. It will take a full
generation before most corporations completely give up their proprietary data centers,
but within half that time most of their critical systems and all of their new projects will
be cloud-based.

OPERATING SYSTEM SECURITY

System-level security within a public cloud is provided on multiple levels: the OS of the
host system, the virtual instance operating system or guest OS, a stateful firewall, and
signed API calls. Each of these items builds on the capabilities of the others. The ultimate
goal is to ensure that data contained in the public cloud can’t be intercepted by non-
authorized systems or users and that virtual machine instances in the cloud are secure.

For instance, to maintain security of the host OSs, Amazon requires AWS
administrators with a business need to use their individual cryptographically strong
SSH key s to gain access to a bastion host . Bastion hosts are specifically built systems
designed and configured to protect Amazon’s management plane of the cloud and are
inaccessible by cloud users. Once connected to the bastion, authorized administrators
are able to use a privilege escalation command to gain access to an individual host.
Amazon routinely logs and audits all such accesses. When an AWS employee no longer
has a business need to administer EC2 hosts, their privileges on and access to the
bastion hosts are revoked.

Paravirtualization’s role in security
Most public clouds (such as Amazon’s EC2) are based on a type of virtualization
called paravirtualization . In paravirtualization, a software interface to virtual machines
similar but not identical to that of the underlying hardware is presented. The intent
is to reduce the portion of the guest’s execution time spent performing operations
that are substantially more difficult to run in a virtual environment compared to
a nonvirtualized environment. A paravirtualized platform allows the virtual machine
monitor (VMM) to be simpler (by relocating execution of critical tasks from the virtual
domain to the host domain), and/or reduces the overall performance degradation
of machine-execution inside the virtual guest. More important, for this security
discussion, the guest OS has no elevated access to the CPU. This leads to a clear
separation between guest and hypervisor, which, in theory, provides strong security.

NETWORK SECURITY

The public clouds all provide a firewall ; ideally (but not true in all public clouds), the
inbound firewall is configured in a default deny mode for safety, and the user must ex-
plicitly open any ports to allow inbound traffic. Like any good firewall, the traffic may
be restricted by protocol, by service port, as well as by source IP address (individual IP
or Classless Inter-Domain Routing [CIDR] block).

82 CHAPTER 4 Security and the private cloud

Control of and changes to the firewall aren’t controlled by the host/instance itself,
but require the customer’s X.509 certificate and key to authorize changes, thus adding
an extra layer of security. Within EC2, the host administrator and cloud administrator
can be separate people, permitting two-man-rule security policies to be enforced. In
addition, AWS encourages customers to apply additional per-instance filters with host-
based firewalls such as IPtables . This can restrict both inbound and outbound traffic
on each instance.

The level of security afforded by the firewall is a function of which ports are opened
by you, and for what duration and purpose. The default state is to deny all incoming
traffic, and developers should plan carefully what they’ll open when building and
securing their applications. It still requires well-informed traffic management and
security design on a per-instance basis.

The fact that the prominent public cloud providers were first and foremost major
internet destination sites has enormous benefits. Their e-commerce operations were
and are subject to incoming attacks, such as Distributed Denial of Service (DDoS)
attacks. Their prowess in preventing such attacks bleeds over to their public clouds. To
wit, public cloud control API endpoints are hosted on the same internet-scale, world-
class infrastructure that supports the public cloud provider’s other business sites.
They use standard DDoS mitigation techniques, such as SYN cookies and connection
limiting . To further mitigate the effect of potential DDoS attacks, providers maintain
internal bandwidth that exceeds their provider-supplied internet bandwidth. This
prevents bandwidth saturation from an external attack agent.

Amazon EC2 instances aren’t permitted to send spoofed traffic (including to another
Amazon customer). The Amazon-controlled, host-based firewall infrastructure won’t
permit an instance to send traffic with a source IP or MAC address other than its own.

CO-MINGLING SECURITY

It isn’t possible for a virtual instance running in promiscuous mode to receive or sniff
traffic intended for a different virtual instance anywhere in Amazon’s cloud. Although
customers can place their interfaces into promiscuous mode, the hypervisor won’t
deliver any traffic to them not addressed to them. This includes two virtual instances
owned by the same customer, even if they’re located on the same physical host. At-
tacks such as ARP cache poisoning don’t work in EC2 . Although Amazon EC2 provides
ample protection against one customer inadvertently or maliciously attempting to view
another’s data, as a standard practice customers should encrypt sensitive traffic.

Cloud providers are already providing stored data verification. They do this efficiently
by performing an MD5 hash on all stored data objects. Your machine instances have
no access to raw disk devices but instead are presented with virtualized disk s. The cloud
provider’s disk virtualization layer automatically wipes every block of storage you use and
guarantees that your data is never exposed to another. Vigilance is still important, and best
practice is to also run an encrypted file system on top of the virtualized disk device.

SYSTEM CONTROL SECURITY

Calls to launch and terminate instances, change firewall parameters, and perform
other functions are all signed by an X.509 certificate or your Amazon Secret Access

Information security in the public cloud 83

Key (described in the appendix). Without access to your Secret Access Key or X.509
certificate, Amazon’s EC2 API can’t make calls on your behalf. In addition, API calls
can be encrypted in transit with SSL to maintain confidentiality. It’s best practice to
always use SSL-protected API endpoint s.

DATA STORAGE SECURITY

An access control list (ACL) associated with the large-granularity storage containers pro-
vided by each cloud storage service controls the write and delete permissions. An ACL
controls the permission to modify the bucket , and it defaults to creator-only access. In
this way, you maintain full control over who has access to your data; you can still grant
access to whomever you want.

Another potential concern is whether data can be intercepted while in transit from
one node on the internet to the cloud storage you’re using. As with all cloud service
APIs, storage APIs are accessible via SSL-encrypted endpoints. You can access the
encrypted endpoints from both the internet and your instances in the cloud, ensuring
that data is transferred securely both within the cloud and to and from sources outside
of the cloud.

Best practice is to secure data even when it’s being stored in cloud storage. You
should encrypt your data before it’s uploaded to the cloud so the data can’t be accessed
or tampered with by unauthorized parties either in transit or at rest.

4.1.5 Application owner’s roles and responsibilities

Individual users are responsible for the security of the guest OS s running in the vir-
tualized environment. You have full root access and all administrative control over
additional accounts, services, and applications. This makes it vitally important to keep
account passwords and access to secret keys strong and secret, and to rotate them fre-
quently. As with all security, social engineering2 always remains the weakest link in the
information security chain.

Public cloud administrators never have access to customer instances and can’t log in
to the guest OS. It’s considered good practice to disable password-based access to hosts
and utilize token or key-based authentication to gain access to unprivileged accounts.
It’s also standard best practice to employ a privilege escalation mechanism with logging
on a per-user basis. For example, if the guest OS is Linux , use SSH with keys to access
the virtual instance, enable shell command-line logging , and use the sudo utility for
privilege escalation. You should generate your own key pairs in order to guarantee that
they’re unique (not have the provider generate them) and not shared with anyone else,
particularly the cloud provider. The good news is that all the practices we’re describing
are nothing new to system administrators—they already do these things in corporate
data centers all over the world.

You’ve been reading about the various types of security measures used to make
public clouds as secure as corporate data centers. But it’s now time to talk about the
concept of private clouds.

2 Social engineering is the act of manipulating (tricking) people into performing security functions or divulging
confidential information.

84 CHAPTER 4 Security and the private cloud

4.2 Rationale for a private cloud
It may be useful to step back and recall what exactly a cloud is. This is necessary in the
context of the discussion of private clouds because you can lose clarity in understanding:
IT vendors, knowing how attractive the moniker is, often try to cast any and every solu-
tion as a cloud solution. Many vendors with products and services that involve virtualiza-
tion, storage, or data-center automation claim that they have a private cloud offering.

4.2.1 Defining a private cloud

A private cloud comprises a subset of the five main principles we’ve been using as our
definition of cloud computing:

■ Pooled resources —Available to any subscribing users
■ Virtualization —High utilization of assets
■ Elasticity —Dynamic scale without CAPEX
■ Automation —Building, deploying, configuring, provisioning, and moving, all

without manual intervention
■ Metered billing —Per-usage business model: pay for what you use

For private clouds, the three principles associated with the technical attributes still hold
true—virtualization, elasticity, and automation—and translate directly from public clouds
to private clouds. The other two—pooled resources and metered billing—relate more
specifically to the business attributes of public clouds and are less directly applicable to
the private cloud. Private clouds by definition aren’t a pool of computing resources ac-
cessible to subscribing users on demand. Not just anyone with a credit card can access
the resources in a private cloud; these resources are reserved for the exclusive use of the
organization which owns the resources. They may implement metered billing in certain
cases for private clouds within large organizations, but not necessarily.

PRIVATE CLOUD (OR INTERNAL CLOUD OR CORPORATE CLOUD) A computing
architecture that provides hosted services to a specific group of people behind
a firewall. A private cloud uses virtualization, automation, and distributed
computing to provide on-demand elastic computing capacity to internal users.

As you saw earlier in chapter 3, public cloud providers are spending a great deal of
money in new data centers to power their cloud initiatives, with Google investing
approximately $2.3 billion in 2008 for its buildout.3 At first glance, in the face of this
massive investment, it may seem like a foolhardy proposition to attempt to go it alone
and build your own private cloud. But remember that large IT organizations have a
long history of providing data-center services, many with longer track records of doing
so than most if not all of today’s incumbent cloud providers (Amazon, Google, and
Microsoft). They have tremendous amounts of resources and past investment in hard-
ware and data center assets. They can certainly put these to good use.

3 Rich Miller, “Facebook: $20 Million a Year on Data Centers,” www.datacenterknowledge.com/
archives/2009/05/18/facebook-20-million-a-year-on-data-centers/.

http://www.datacenterknowledge.com/

Rationale for a private cloud 85

Public cloud spending in perspective
Before you get too carried away with the thought that public cloud providers have
economies of scale beyond the reach of anyone else because of the amount they
spend on hardware and data centers, you should ground yourself with a few facts.
Let’s assume that Google, Amazon, and Microsoft each spend $10 billion per year
next year on cloud infrastructure. That amount is only a drop in the bucket compared
to the total amount of money spent annually on IT worldwide. The financial services
industry alone will spend over 50 times that much on IT in 2010 (~$500 billion).

Over the last decade, many large enterprises have launched virtualization projects and
initiatives and have reaped the benefit of increased resource utilization and efficien-
cies. Those that have done so are one step closer toward having a private cloud. As
described earlier, this is one of the three key technology principles for private cloud
computing. The only incremental changes needed to have a private cloud are the ad-
dition of elasticity and cloud-automation technologies.

Four primary considerations—security, availability, user community (size), and
economies of scale—drive the choice of a private cloud as a deployment strategy. You
can see this in table 4.1.

The security and availability constraints of target applications and data, and the
degree to which they must be under direct control, may dictate whether a public cloud
option is viable or whether you should consider a private cloud solution. For a private
cloud deployment to make sense, your company’s size and needs should be sufficiently
large to have economies of scale when purchasing capital equipment.

Table 4.1 The four primary private cloud considerations

Consideration Rationale

Security Applications that require direct control and custody over data for
security or privacy reasons

Availability Applications that require certain access to a defined set of computing
resources that can’t be guaranteed in a shared resource pool
environment

User community Organization with a large number of users, perhaps geographically
distributed, who need access to utility computing resources

Economies of scale Existing data center and hardware resources that can be used, and
the ability to purchase capital equipment at favorable pricing levels

If your organization’s security and availability requirements are high at the same time,
the scope of the user base to be supported and the purchasing power of your organiza-
tion must be sufficiently strong for a private cloud to be a good option.

4.2.2 Security considerations

Although as you saw earlier in this chapter, security within the public cloud can often
be comparable or superior to data security in a corporate data center, public cloud

86 CHAPTER 4 Security and the private cloud

computing isn’t always an option. For example, many government organizations have
applications that deal with confidential or classified data that under no circumstances
may be put at risk, such as those dealing with national security . Other applications
in other industries have regulatory requirements that make them think twice before
deploying to a public cloud. The main distinction that makes private clouds more se-
cure and more appropriate for compliance concerns is simply this: they can physically
and logically segregate resources more thoroughly and thereby remove more doubts
among users that their data is safe and secure.

Public cloud providers are aware that security is a main blocking or gating factor
for many enterprises and have devoted significant resources to designing and proving
their ability to deal with secure data. As mentioned previously, Amazon has achieved
SAS 70 Type II certification for AWS, which ensures that it has the appropriate
processes and infrastructure in place to handle data securely and with high availability
for customers. Amazon has also made claims that its infrastructure has been designed
such that it can support the requirements of regulatory frameworks, such as HIPAA.
HIPAA spells out the measures that organizations in the healthcare industry must
adhere to in order to ensure the privacy of their patient’s data. Having the hooks
to enable HIPAA compliance and implementing a HIPAA-compliant application are
two different things. Providers must develop best practices and gain experience in
supporting HIPAA-compliant applications in the public cloud before most enterprises
will be comfortable with this mode of deployment.

4.2.3 Certainty of resource availability

Although you may think of the cloud as an infinite resource pool from which resources
can be drawn, this isn’t always the case. For example, consider an application that
requires a huge number of resources for massive processing in a short time window.
As of late 2009, Amazon has advised its users that it can’t guarantee the availability of
500 XL instance s (where XL instances are high-compute resources with 8 CPU virtu-
als) at any given time from a specific availability zone. For cases requiring resources
in excess of 1,000 XL instances, Amazon requests a week’s prior notice to improve the
chances of the resources being available.

Resource constraints are a much more serious matter in smaller cloud providers.
Rackspace , also in late 2009, imposed a limit of 50 virtual instances being run in its
environment per day for any given user. Overall total capacity in these systems should
improve going forward; but even so, there is still the caveat related to variations in
demand caused by overlapping requirements from multiple different public cloud
customers. By comparison, electric utilities, which have been running for more than a
century, still have capacity issues in the heat of the summer when demand for electricity
to power air-conditioning can cause brownouts due to a mismatch of available supply
and demand. You can easily imagine the same thing happening in the cloud context if
all e-commerce sites were public cloud consumers and witnessed 10X traffic spikes on
Black Friday as the shopping season began or if there were another terrorist incident .
At some point, cloud pricing will take into account this type of variability in demand,
and providers will introduce variable pricing.

Rationale for a private cloud 87

4.2.4 Large utility-computing community

If you have a relatively small requirement for utility computing resources, having a
good virtualized infrastructure can probably suffice. But if your organization has many
constituents that can take advantage of a generalized infrastructure for their needs,
then the added complexity and sophistication of a cloud infrastructure may make
sense. By implementing a private cloud, you’ll introduce the concept of multitenancy
and, hence, the ability to segment and isolate individual groups and users.

4.2.5 Economies of scale

A public cloud provider has two potential primary advantages from an economic
perspective over a company interested in running its own private cloud. The first
relates to the physical resources required to run a cloud. In chapter 2, you saw how
the public cloud providers’ buying power is harnessed to purchase large quantities
of hardware for servers and build data centers with good network connectivity and
low-cost power. In chapter 3, you saw how that translated in terms of a business case
for deploying applications. These arguments are based on the ability to purchase
servers and hosting resources at small scale. For a large multinational or govern-
ment, the economics may be much different given the long-term relationships and
volumes that are purchased annually from their sources. On top of this, consider
that these organizations may already have large quantities of hardware and pipe
available. In addition, if a company is already in the midst of executing a virtualiza-
tion strategy, the existing investments may be well positioned to be converted into
a cloud.

The second aspect relates to the expertise required to run and maintain a cloud
infrastructure. The public cloud providers, as they’ve been designing for scale, have
been creating infrastructure where one of the primary objectives is the reduction of
the number of resources required to operate a data center. In most cases, conventional
IT organizations require more engineers and technicians to run a smaller data center.
By migrating to a cloud-style deployment, they may save money over their existing
deployment. But this may require a retooling of their current resources or hiring a
smaller number of more skilled resources.

4.2.6 Some concerns about deploying a private cloud

Before you or anyone jumps to deploying a private cloud, let’s assess a quick set of four
major concerns.

PRIVATE CLOUDS ARE SMALL SCALE

Why do most innovative cloud-computing providers have their roots in powering con-
sumer web technology? Because that’s where the big numbers of users are. Few corpo-
rate data centers see anything close to the type of volume seen by these vendors. And,
as you’ve seen, volume drives costs down through the huge economies of scale.

LEGACY APPLICATION DON’T CLOUDIFY EASILY

Legacy applications moved to a private cloud will see marginal improvements at best.

88 CHAPTER 4 Security and the private cloud

You can achieve only so much without rearchitecting these applications to a cloud
infrastructure.

ON-PREMISES DOESN’T NECESSARILY MEAN MORE SECURE

The biggest drivers toward private clouds have been fear, uncertainty, and doubt about
security. For many, it feels more secure to have your data behind your firewall in a data
center that you control. But unless your company spends more money and energy
thinking about security than Amazon, Google, and Salesforce, that isn’t true.

DO WHAT YOU DO BEST

Do you think there’s a simple set of tricks that an operator of a data center can
borrow from Amazon or Google? No way. These companies make their living op-
erating the world’s largest data centers. They’re constantly optimizing how they
operate based on real-time performance feedback from millions of transactions.
Although you can try to learn from and emulate them (hard to do because they
protect their trade secrets as if national security depended on it!), your rate of in-
novation will never be the same—private clouds will always be many steps behind
the public clouds.

4.2.7 Private cloud deployment options

If, despite these concerns, you plan to proceed down the private cloud path, you
have several options available for building your private cloud. As discussed earli-
er, for companies and organizations that can acquire and provision hardware and
data-center resources efficiently enough, a private cloud may make sense. In addi-
tion to the capital costs for hardware, an organization needs to determine its strat-
egy with respect to the software infrastructure it’ll use to operate and manage the
cloud. The costs involved vary substantially and can range from free if you adopt
an open source approach to over $1 million for a full-service offering that in-
cludes proprietary software and architecture, design, and implementation services.
Table 4.2 summarizes the possible private cloud implementation categories and ex-
ample vendors/solutions.

Table 4.2 Private cloud deployment options by type

Provider type Example vendors Description

Open source Eucalyptus , OpenNebula Free software for creating a private cloud
implementation, primarily on UNIX -based systems

Proprietary
software

VMware , Enomaly , Appistry Proprietary private cloud solutions open with a
specific strength in a core cloud technology, such
as virtualization, storage, or management

Hosted offering Savvis , OpSource , SunGard Dedicated hardware hosted in a cloud model for
a single customer, built using either open source
or a proprietary solution

System
integrator

Appirio , Accenture , Infosys Specialty providers or practice areas in large
firms dedicated to architecture, design, and
deployment of private clouds

Rationale for a private cloud 89

DO-IT-YOURSELF PRIVATE CLOUDS/OPEN SOURCE

The public cloud providers have primarily implemented their solutions with a combi-
nation of open source and homegrown software. Their user-facing APIs are publicly
visible, but they haven’t released the core technologies for operating and managing
their clouds. Eucalyptus and OpenNebula are two open source initiatives, both off-
shoots of university research projects , that have created software to replicate the home-
grown software of the large public cloud providers. They provide a software capability
for provisioning and managing a multiuser private cloud built on top of commod-
ity hardware. They’ve also made their solutions compatible with the APIs provided
by Amazon.

Using these software solutions allows you to create an interoperable infrastructure
that can work as a hybrid cloud . They’re open source initiatives and, unlike proprietary
approaches, there’s no specific incentive (such as having you buy more of their software)
to create lock-in; and you have unlimited flexibility as usual and with the same regular
caveats around support and usability. Constructing a private cloud using open-source
technologies requires a high degree of technical sophistication and probably works best
in organizations that have a history of working with open source on other projects.

PROPRIETARY SOFTWARE CLOUD SOLUTIONS

Several vendors offer commercial packages to enable private clouds. Best-of-breed
startups, such as Appistry , focus specifically on this problem. Like the open-source
solutions described previously, they’re designed to enable the creation of a private
cloud on multiple commodity hardware resources. Some providers, such as ParaS-
cale , focus specifically on the aspects of cloud computing related to storage. Large IT
vendors, such as EMC , Oracle , IBM , and Unisys , are positioning themselves as being
able to provide an entire private cloud stack, including hardware systems, virtualiza-
tion technology, and software applications for operating and managing the private
cloud. These systems can be as small as a handful of rack-mounted appliances or as
large as data centers filled with thousands of servers housed in modular container
pods. Additionally, these providers offer provide consulting services for the architec-
ture, design, and implementation of clouds.

PRIVATIZATION OF PUBLIC CLOUDS

Public cloud service providers also provide services that are moving closer to the con-
cept of private clouds. The Amazon Virtual Private Cloud (VPC) offering allows you
to connect resources in the public cloud from within its firewall via an IPSec VPN.
This isn’t the same as a private cloud—merely the ability to connect and communicate
securely with public cloud resources. You’ll read much more about the VPC concept
in section 4.3.

The next logical step for hosting and public cloud providers is to deliver dedicated
private cloud services. In this model, a service provider reserves or dedicates a specific
portion of the cloud infrastructure to a specific customer. Some example providers
of dedicated private cloud hosting include Savvis , which provides cloud services as
a horizontal solution; and SunGard , which provides dedicated cloud services for

90 CHAPTER 4 Security and the private cloud

financial services customers. Dedicated cloud services are much more costly than
public cloud services; the difference in cost is similar to the difference in cost between
shared commodity hosting, which can be had for under $100/year, and traditional
dedicated hosting, which can cost as much as $1,000/month per server.

Up to this point in the chapter, you’ve read about the merits and drawbacks of
pursuing a private cloud strategy and have looked at some of the options for creating
a private cloud. Now, let’s switch gears and look practically at how to build a private
cloud system using open source. It turns out that putting together a private cloud, at
least a small-scale proof-of-concept system, is straightforward. Building such a system
can help you understand the software components that make up a cloud. Because
the open-source private cloud systems have been designed for interoperability with
Amazon EC2, they can also provide a playpen environment for experimenting with a
hybrid cloud (part private, part public).

IMPLEMENTING AN OPEN-SOURCE PRIVATE CLOUD

It’s becoming increasingly easy to put together a private cloud using open source as
major Linux distributions start bundling cloud software in their standard packages.
Ubuntu 9.10 Server, for example, has an option to deploy a configuration called Ubuntu
Enterprise Cloud (UEC). On a clean install of the OS, UEC is provided as an option.
When you choose this option, Eucalyptus cloud software is installed on the system.

The Eucalyptus system consists of several software components that run the private
cloud. The first component is called the Node Controller (NC); it resides on each
computer that consists of the pool of available resources for creating virtual instances.
The NC is responsible for managing the virtual instances started and stopped on an
individual computer. One or more computers with NCs on them constitute a cluster,
which is managed by another process called the Cluster Controller (CC). The CC is
responsible for managing the NCs in its cluster and farms out work orders it receives to
the NCs to start and stop virtual instances. A single Cloud Controller (CLC) manages
one or more CCs. The CLC is the central management point for the entire system.
It’s the system of record that contains data tables that describe the overall system
and keeps track of the users of the system. The administrator of the system can
connect to the CLC to add users and set overall system parameters, such as the sizes
and allocations of instances within the system. The CLC also handles authenticating
users and processing their requests to do things, such as start and stop instances.
The Eucalyptus components talk to each other, but only the CLC need be exposed
to a public address space to enhance the security of the system. The network
communication between the CLC and the CC and between the NC can all be isolated
in private network space.

The smallest possible cloud system would consist of two computers: one that served
as the CLC and the CC, and another with a NC managing all the available virtual
instances. The default virtualization technology used by Eucalyptus is Xen , although
you can use other virtualization technologies, such as VMware and VirtualBox . Xen as
the virtualization technology has the advantage of being interoperable and migratable

Rationale for a private cloud 91

to the Amazon cloud. Much larger configurations are also possible with multiple CCs
managing virtuals on multiple NCs.

The clusters in a Eucalyptus system are analogous to the availability zones within
Amazon. You can see an architecture diagram depicting the topology in figure 4.8.

As mentioned earlier, a plus point of the open-source cloud implementations is
the fact that they have been built to interoperate with the Amazon cloud. The CLC
exposes SOAP-based client interfaces that conform to the WSDL documentation
provided by Amazon. Because Amazon publishes its user-facing APIs, open-source
cloud software providers are able to provide client interfaces that are compatible.
Administration interfaces used by Amazon to run EC2 aren’t publicly available, so
Eucalyptus implemented its own interfaces. The administrator, either through a web-
based interface or via command line, accesses these Eucalyptus-specific interfaces. For
registration, to use the Amazon cloud, automatic approval is granted using credit-card

Clusters within a Eucalyptus System

Client Client Client

CC

NC

NC

NC

NC

NC

NC NC

NC

NC

NC

NC

NC NC

NC

NC

NC

NC

NC

CC

CLC

CC

Figure 4.8 Architectural model for a Eucalyptus private cloud implementation.
The Node Controllers (NCs) manage virtual instances on each physical server.
These are controlled up in the hierarchy by Cluster Controllers (CCs) that
manage an availability zone. At the top level, the Cloud Controller (CLC)
manages the entire private cloud system and takes commands from both
administrator and user client systems.

92 CHAPTER 4 Security and the private cloud

verification. In the Eucalyptus system, you can request access via a web-based interface
that sends an email to the administrator who manually grants access. The administrator
can start or terminate your instances and is able to add disk images. The administrator
is also in charge of adding clusters and nodes to the cloud configuration.

The open-source private cloud implementations provide a simple way to begin
experimenting with private cloud technologies. Both Eucalyptus and Open Nebula
were developed as academic research projects; both were built to help elucidate the
functionality of private clouds. They were also built with extensibility in mind, meaning
that the prebuilt functionality was designed to allow additional capabilities to be layered
on. Proprietary cloud software offers greater functionality out of the box. You’ll find
some examples of this in load-balancing and fault-tolerance functionality as well as
more extensive management and monitoring capabilities for effectively administering
the cloud.

4.3 A virtual private cloud
Amazon is the first to have created a virtual private cloud (VPC) that connects
your data center to Amazon’s EC2. The idea is to use Amazon EC2 instances within
VPC to add additional web-facing servers to your application when the
traffic exceeds your on-premise capacity. The back-end of your application, database
servers, authentication servers, and so forth, remains within the walls of your data
center. When demand subsides, you can terminate the Amazon EC2 instances that
you no longer require. Amazon has chosen not to call this cloudbursting , but that’s
precisely what it is.

A virtual private cloud
Amazon Virtual Private Cloud is a secure and seamless bridge between a company’s
existing IT infrastructure and the public cloud. Although not a private cloud as you’ve
read about earlier, this approach offers corporations a hybrid model merging aspects
of the company’s data center with a major cloud provider’s public cloud.

Amazon’s VPC enables enterprises to connect their existing infrastructure to a set
of isolated AWS compute resources via a Virtual Private Network (VPN) connection,
and to extend their existing management capabilities, such as security services,
firewalls, and intrusion-detection systems to include their AWS resources.

Google has a similar structure called Secure Data Connector , which connects legacy
infrastructure to Google’s AppEngine Platform as a Service (PaaS) public cloud.

4.3.1 How it works

A VPC is a secure and seamless bridge between an organization’s existing IT infrastruc-
ture and a provider’s public cloud. You can see this in a high-level simplistic fashion in

A virtual private cloud 93

figure 4.9. The idea is to connect an organization’s existing infrastructure to a set of
isolated cloud-compute resources via a VPN connection.

In this way, an organization can extend its existing management capabilities and
security services, such as firewalls and intrusion-detection systems, to include the cloud
resources that have been dedicated to the organization, and protect the information
there the same as is done now.

4.3.2 The API

The operation of a VPC when there’s an existing mature public cloud is fairly simple.
You launch standard instances, such as for Amazon EC2, into a new VPC, and then
EC2 API calls are used to dictate the IP address range from which this new instance
will receive its IP address. Then, you use your preexisting security infrastructure, such
as firewalls, intrusion-detection systems, and management systems, to enforce policies
based on these IP address ranges and control who and what has access to resources
running inside your VPC. Table 4.3 briefly outlines the steps.

Organization’s isolated resources
within provider’s cloud

Subnets

Organization’s
legacy infrastructure

VPN IPsec
tunnel

Public Cloud

VMI VMI
VMI VMI

VMI VMI

VMI VMI

VMIVMI

VMIVMI

VMI VMI

Figure 4.9 A high-level architectural view of a virtual private network. A secure VPN
connection connects an organization’s existing infrastructure—including all its security
components, such as firewalls and intrusion-detection systems—to a portion of the public
cloud isolated for the organization.

94 CHAPTER 4 Security and the private cloud

Table 4.3 Basic steps to create a virtual private cloud using EC2 API calls

API call Function

CreateVpc Creates your VPC, within which you define the IP address
space you wish to use. Create one or more subnets where your
isolated resources, such as Amazon EC2 instances, are placed.
You need at least one subnet, but you can have more.

CreateCustomerGateway Creates a Customer Gateway , providing information about
your devices such as IP address and other networking-related
information. CreateCustomerGateway returns a Customer
Gateway ID that you can use to represent your device when
interacting with the service.

CreateVpnGateway Creates a VPN Gateway, which anchors the VPC side of your
VPN connection and encrypts/decrypts messages to/from the
Customer Gateway via the VPN connection.

CreateVpnConnection Creates a VPN connection between your Customer and VPN
Gateways.

In addition to cloudbursting, Amazon’s VPC tries to offer a solution that addresses
cloud security, which, as we’ve said, remains the single biggest impediment most enter-
prises cite as their reason not to adopt cloud computing.

4.3.3 Implications

A virtual private cloud has many usage scenarios. Let’s briefly discuss three here: ex-
panding corporate applications into the cloud, scaling a website into the cloud, and
setting up a disaster-recovery site.

EXPANDING CORPORATE APPLICATIONS INTO THE CLOUD

Moving your corporate applications into the cloud to reduce the total cost of ownership
can realistically be achieved using a VPC. Applications such as email systems, financial
systems, trouble-ticketing systems, CRM applications, and others are standard fare for
all large organizations. These corporate applications can be logically grouped by IP
address range according to existing deployment policies; and because the VPC you set
up exists behind your corporate firewall, users can access the applications moved into
the VPC the same way they do today.

ELASTICALLY SCALING YOUR WEBSITE IN THE CLOUD

Corporate websites can be an embarrassing place for failure due to sudden spikes
in traffic. Any new ad or a news story can set this in motion. You can use VPC
to add web servers. When the traffic load exceeds your on-premises capacity, you
have room to expand dynamically (and quickly). The back-end of your website,
database servers, authentication servers, and so on, can remain within the walls of
your data center. When demand subsides, you terminate the Amazon EC2 instances
you no longer require, and you don’t have to pay for the excess capacity you’d
normally have.

 Private cloud s in practice 95

DISASTER RECOVERY

Disaster recovery is vitally important but expensive and can be difficult because you
have to use a different data-center location. Using VPC, you can periodically back
up mission-critical data from your data center to a small number of virtual instances
in conjunction with large cloud storage volumes. In the event of a disaster, you can
quickly launch replacement compute capacity to ensure business continuity. When the
disaster is over, you send your mission-critical data back to your data center and termi-
nate the cloud instances you no longer require.

That’s the theory. Now, let’s look at several real-world case studies to further
illuminate how private clouds can be used effectively.

4.4 Private cloud s in practice
Let’s look at three specific private cloud initiatives and implementations as a way to under-
stand how attributes such as the security constraints of the application and requirements
of specific organizations caused the implementation to take a private cloud route.

4.4.1 Sprint: private cloud for fraud-detection application

The first example comes from the telecommunications industry and involves Sprint.
Sprint is the third largest provider of wireless voice and communications in the U.S. It
has roughly 50 million subscribers and needs to process the operational events gener-
ated by these users across a nationally distributed network in real time. Sprint chose to
deploy a private cloud to process this data for the purposes of fraud detection .

A fraud application deals with private information of the wireless carrier’s
subscribers; using a private cloud makes good sense. In addition to private data related
to your identity, such as your credit card information, a wireless carrier also has access
to data relating to your geographic location in real time. Not only can it determine
your location from the cell tower your phone is using during a call, but often, if the cell
phone is on, it can determine your location at all times.

Sprint could have chosen to deploy the fraud application in a traditional manner,
utilizing a few expensive, high-performance computing servers. Instead, the company
chose a cloud-like approach of developing the application for deployment on many
commodity x86 servers. The Sprint private cloud is small scale in comparison to a public
cloud, using on the order of 100 commodity servers as opposed to the thousands or
more that are involved in a public cloud deployment. It uses software from Appistry as
the cloud technology to provide management infrastructure for these servers. Appistry
also provides the middleware layer that allows the application to be distributed and
load-balanced across multiple servers so that it can run reliably and in a fault-tolerant
manner across the infrastructure.

The cheap, commodity-server strategy allows an organization to deploy incrementally
and dynamically as load increases. Deploying as a private cloud, as opposed to a public
cloud, allows for greater control and a guarantee that all available resources can be
allocated to the task. This example, although it’s small scale, demonstrates many of the
aspects of a successful private cloud deployment.

96 CHAPTER 4 Security and the private cloud

One aspect of a private cloud, although not present in this example, is that it isn’t
strictly speaking a utility platform for general computing, and it isn’t shared across
multiple constituencies for various purposes. In the next example, we’ll look at a
deployment that does have this characteristic.

4.4.2 Bechtel Project Services Network (PSN)

Bechtel is a large construction and engineering company with over 40,000 employees.
The company runs projects in 50 countries worldwide. Its CIO, Geir Ramleth , set out
in 2006 to transform the traditional IT infrastructure into one that was state of the art.
His basic premise was that in the last decade, most IT innovation was being performed
in consumer-oriented companies. He studied 18 of them to see how he could improve
the way his organization operated. He found there were drastic differences in the cost
and efficiency of his organization when compared with these best-in-class operations.
In his keynote address at the 2008 IT Roadmap Conference and Expo , Ramleth cited
some of these differences:

■ Bandwidth—YouTube pays $10-15/megabit for its WAN bandwidth, whereas
Bechtel paid $500/megabit.

■ Storage—Amazon charges its cloud customers $0.15/GB/month, compared to
the $3.75/GB/month Bechtel pays.

■ IT server maintenance—Google can maintain 20,000 servers with one systems ad-
ministrator, whereas Bechtel needed 1 for every 100 servers.

■ Software applications—Salesforce.com has only one version of its application ser-
vicing 1 million users, which it upgrades four times a year with little downtime
and few training requirements. In comparison, Bechtel used 230 different appli-
cations with up to 5 versions each, amounting to almost 800 different versions of
applications servicing 40,000 employees. These applications required ongoing
training and frequent maintenance upgrades.

Bechtel transformed its IT infrastructure into a private cloud by standardizing its hard-
ware and software infrastructure. It consolidated its data-center assets, closing seven
data centers and consolidating its core computational assets into three retooled and
standardized centers. It virtualized its infrastructure, resulting in improved server and
storage utilization. From the application perspective, it moved to a more standardized
overall portal with modules for customized applications. The result of the transforma-
tion was a savings of 25 to 30 percent in overall IT costs.

4.4.3 Government private clouds

As our final private cloud example, let’s look at the government sector. In September
2009, the federal CIO, Vivek Kunda, announced the launch of a government cloud ini-
tiative. The aim of this initiative was to save money by reducing the cost of government
data centers while simultaneously maintaining a high level of security.

 Private cloud s in practice 97

The federal government has an annual IT budget of over $75 billion. Kunda stated,
“We need a new model to lower costs and innovate. The government should solve
problems, not run data centers.” For nonsecret applications, there’s a push toward
using public-cloud-powered solutions to reduce cost. The Apps.gov website (http://
apps.gov) allows sourcing of cloud-provided technologies by government agencies
(see figure 4.10).

In the case of applications that require secrecy, private clouds are also under
development. In October 2008, the Defense Information Systems Agency (DISA),
which operates under the Department of Defense (DoD), launched a private cloud
military application called the Rapid Access Computing Environment (RACE) .
The RACE platform is the military version of Amazon’s AWS. It streamlines the
acquisition, customization, and provisioning of computing resources, bringing up
test and development environments in 24 hours and true production environments
in 72 hours.

Figure 4.10 The federal government is proceeding headlong into using public cloud services as a
means of reducing costs. On the Apps.gov website, SaaS and cloud-based offerings can be purchased
with a government credit card and the appropriate approvals.

http://apps.gov
http://apps.gov

98 CHAPTER 4 Security and the private cloud

Computing resources run on a LAMP stack (Linux, Apache, MySQL, PHP) and are
available in both Linux and Windows environments, with configurations of 1–4 CPUs,
1–8 GB RAM, and 60 GB to 1 TB of SAN storage. As in the case of a public cloud, these
resources are offered in a pay-as-you-go model on a monthly basis, with pricing starting
at $500/instance/month, and can be purchased with a government credit card.

4.5 The long-term viability of private clouds
As you’ve seen throughout this chapter, private cloud computing is a burgeoning area,
and in some cases deployments of this kind make sense today. Such a deployment re-
quires a lot of existing investment in data centers. Also, best IT practices as they relate
to security in the public cloud haven’t been entirely worked out. As these best practices
are worked out over the next several years, it remains an open question whether the
private cloud will become a pervasive phenomenon.

It may be useful to think of cloud computing in the context of the way electric
power is generated and consumed today. In his book The Big Switch , Nicholas Carr
describes how in the 18th century, companies used waterwheels to generate their
own electricity . Waterwheels and expertise in generating electricity for factories were
considered competitive differentiators.

As public utilities reached scale, it was no longer a competitive differentiator to
maintain your own waterwheel. In fact, doing so became a potential liability as
electricity provided through the electric grid by dedicated electric utilities became
more cost-effective than generators.

Electric power generation outside of public electric utilities didn’t disappear
entirely: companies and governments maintain their own power-generation capabilities
as necessary in the form of backup generators in hospitals and factories as well as
generators in field operations on the battlefield or to power cruise ships or nuclear
submarines. In the same way, you might expect that in a decade or so, there will still be
instances of private clouds, but they will become less and less prevalent. The challenge
for companies that have private clouds is to understand whether it continues to make
sense to have them or whether ultimately they should migrate to a public cloud.

4.6 Summary
Security remains the single biggest fear factor for larger organizations considering a
major move to the cloud. This chapter delved into security in general, discussed how
it’s being practiced by major cloud providers, and examined the case for and against
private clouds.

Private cloud computing is a potential alternative deployment option available
and may make sense for large enterprises and organizations. For organizations with
enough scale, buying power, and expertise, private clouds offer the advantages of
increased control, predictability, and security. You have many options available,
including building a private cloud from open-source technologies, using proprietary
purpose-built solutions, and partnering with service providers willing to allocate or

 Summary 99

partition dedicated resources for a private cloud. We also discussed a variant of the
private cloud—the virtual private cloud—and explained how it works, what it’s good
for, and how to use it.

We finished with a survey of private clouds in practice. Looking at things from
the perspective of the cloud provider, let’s return to examining the cloud from the
perspective of a cloud user. In chapter 5, you’ll learn how applications should be
designed and architected for the cloud (either public or private).

5

100

Designing and architecting
for cloud scale

This chapter covers
■ Dealing with internet scale through the use of

database sharding

■ Connecting a data center to the cloud

■ Expanding to the cloud through cloudbursting

■ Handling exponentially expanding storage through the use
of cloud storage

In this chapter, you’ll learn how to design and architect applications that can handle
the potentially massive scale possible when you’re using the cloud and are exposed
to the entire internet. You’re now prepared for an in-depth discussion of designing
and architecting applications specifically for the cloud. This is important because
you may have applications that scale to large numbers of users—a number so large
that we call it cloud scale . Although this chapter doesn’t require a programmer’s
background, we do go into some detail about issues that are unique to building ap-
plications that are designed for the cloud and prepared for broad-scale use. After
all, one of the primary reasons for utilizing the cloud is to be prepared for, and to

High-scale application patterns that fit the cloud best 101

have an affordable economic model for, that wonderful “problem” of suddenly having
too many users.

We’ll describe the kinds of applications that fit well into the cloud model. And you’ll
learn about several design topics: building for internet scale (including the concept of
sharding); building in on-demand capacity in your data center (cloudbursting); and
storage that keeps expanding. First, let’s examine a set of design patterns that fit well
with the unique characteristics of the cloud.

5.1 High-scale application patterns that fit the cloud best
Let’s begin with a discussion about broad types, or patterns, of high-scale applications
and how they do or don’t fit well into the model of cloud computing. The categories
we’ll consider are called transference, internet scale, burst compute, and elastic stor-
age. These are the most common application patterns that motivate a move to the
cloud to deal with high scale (lots of users, lots of compute, lots of data, or rapid swings
of any of these). We’ll look at these in order, first defining the category followed by a
short discussion of the issues to watch out for.

5.1.1 Transference

Transference is when you take an existing on-premises application and move it to the
cloud as is. This pattern is typically driven by economic factors (as you’ve read earlier
in this book). It can be cheaper to use cloud resources than to run these applications
in-house if you’re not fully employing virtualization for higher utilization in your local
data center. Commodity services, such as email, CRM , and other packaged applica-
tions, are candidates for this pattern.

Zillow.com —a website dedicated to providing consumers accurate expected home
values on any U.S. residential address—is a small business that moved its application as
is to the cloud because it couldn’t afford the servers needed to process the large number
of changes in home values across the entire country when the housing market bubble
burst. It had a huge spike in compute work it needed to accomplish but didn’t want to
buy the necessary servers because they would be excess capacity in a few weeks.

When the transference pattern is the appropriate one to use, you need to watch
out for customizations that work in your local data center but that the host/cloud
doesn’t support. For example, if the application depends on a custom device driver
you built for Linux, you won’t be able to transfer this application to a cloud: cloud
providers won’t allow you to re-create that device driver modification in their Linux
implementation. This aside, you’ll find no other design issues with this pattern, and it
won’t get further coverage in this chapter.

5.1.2 Internet scale

The internet scale design pattern involves creating an application for the cloud that has
the ability to handle huge numbers of users, such as YouTube , Flickr , or Facebook ,

102 CHAPTER 5 Designing and architecting for cloud scale

without requiring the corresponding substantial capital investment from day one. This
is a common pattern for prototyping new applications because it allows a significantly
lower entrance cost (no servers are being purchased). It also lets you start very small
yet expand when needed.

When Facebook started, it was run off a single server and serviced only Harvard
University students. Facebook built its own data center on its way to supporting
400 million users. If the cloud had existed, the company would have avoided a
few growing pains caused by data center and application limitations along the
way. Twitter also started as one guy on one server; and because it resonated with
people, it grew at an unprecedented pace. It faced many outages because of scaling
problems . If you’re a small company with big visions of building a service that
people want, you need to think hard about starting in the cloud with a strong,
scalable design.

Finally, designing for and starting in a cloud is applicable as a risk-mitigation
measure for applications with unpredictable growth. One of the most challenging
design issues for this application pattern, when the application does have to scale,
revolves around the database structure: without care, it quickly becomes the
database that prevents scale. You’ll see how to address this issue in detail later in
this chapter.

5.1.3 Burst compute

Applications that fit the burst compute pattern have the ability to handle additional
compute capability on an as-needed basis without idle, over-provisioned resources.
Applications ideal for this pattern have large swings in capacity requirements, particu-
larly if the spikes are somewhat rare.

A good example is the site Eventseer.net. It routinely bursts out to Amazon ’s cloud
to statically generate changed pages on its 600,000-page site because it doesn’t have
the capacity internally to do this fast enough.

The burst compute pattern is driven by the economic factors of the cloud. The
cost of additional hardware capacity required to support this pattern internally is
prohibitive. Real bursts of load can be handled cost effectively in the pay-only-for-what-
you-use cloud model. You’ll read about cloudbursting as a nice solution for the burst
compute application pattern later in the chapter.

5.1.4 Elastic storage

In the elastic storage application pattern, applications have the ability to grow expo-
nential ly from a storage perspective. Although local storage is relatively cheap, its
management is fairly expensive. As a result, using a cloud platform can be a cheaper
alternative to local storage management . But using this pattern requires careful
thought and planning for accessing the data. For instance, if you’re using the cloud
purely to store data, but processing it locally, performance may be unacceptable;
that would make this pattern not applicable.

5.1.5 Summarizing the application patterns

Table 5.1 summarizes the five major cloud application patterns. Note that the sense
of the word design we’re using in this chapter is the act of working out the form of some-
thing. And the word architecture is the structure and organization of a computer’s hardware
or system software.

Table 5.1 Summary of the five major cloud-scaling application patterns, their major issues, and the
section in which they’re discussed

Pattern Description Major issues Section

Transference Existing on-premises application
moved to the cloud as is for
economic benefits

Application customizations may
not transfer or work.

N/A

Internet scale New web-facing applications
with unpredictable growth

Database design can throttle
growth; consider sharding.

5.2

Burst compute Applications with large swings
of capacity requirements,
particularly if spikes are rare

Load-balancing requires a
strategy; database access from
data center to cloud is the issue.

5.3

Elastic storage Application storage that has the
ability to grow exponentially

Local processing of cloud
accessed data may preclude this
pattern.

5.4

Let’s suppose you’re thinking about adapting or building from scratch an application
that will run in whole or in part on the cloud, and it will deal with the implied scale of
the huge population of the internet as well. What form should it take? What are the
issues you must address to have it successfully take that form? What is the hardware
configuration (potentially virtual hardware) required? What is the structure, and what
are the components to be included in the software solution you create? Your answers
lie in the design and architecture of the application. Let’s now tackle the design and
architecture issues for the internet scale application pattern.

5.2 Designing and architecting for internet scale: sharding
When you think internet scale —by which we mean exposure to the enormous popula-
tion of entities (human and machine) that could potentially access your application—
you may think of any number of the most popular services. Google is the obvious king
of the realm, but Facebook , Flickr , Yahoo! and many others have faced these issues
when scaling to hundreds of millions of users. eBay may surprise you by how big it’s
become and how much it’s had to engineer in enormous scale (see figure 5.1).

Each of these services was throttled at some point by the way it used the database
where information about its users was being accessed. For many internet companies,
these problems were so severe that they required major reengineering , sometimes
many times over. That’s a good lesson to learn early as you’re thinking about how to
design internet scale applications.

Designing and architecting for internet scale: sharding 103

104 CHAPTER 5 Designing and architecting for cloud scale

5.2.1 Application issues that prevent scaling

Many best-in-the-industry applications had to
completely reengineer their successful ser-
vices as they grew and became more popular.
Some weren’t able to do so in time. Their ex-
periences highlight two of the most impactful
issues that prevent applications from achiev-
ing internet scale: too large a working set, and
frequent and/or large database updates.

WORKING SETS TOO LARGE

If the amount of memory required to
keep your frequently accessed data loaded
in memory exceeds what you can (eco-
nomically) fit in a commodity machine’s
main memory, your application has too
large a working set . Five years ago, this was
4 GB; today it’s 128 GB or even 256 GB. Note that this need not be the same size
(or even near) the size of your entire database, assuming good database schema
and indexing.

TOO MANY WRITES

If either the I/O system or a slave working on its behalf can’t keep up with the number
of writes—recording the data—being sent to the server, there are too many writes for the
system to scale any further. The I/O system is throttling the application. Although you can
improve the I/O system with a RAID approach (perhaps by 5X or even 10X), the slave-
delay problem is hard to solve and only delays when the throttle point is hit anyway.

SOLUTION: PARTITION THE DATA

What is the solution? Partition the data. Easy as that may sound, it’s extremely hard to
do. But you can do it by splitting the data between multiple machines, and have a way
to make sure you always access data from the right place.

For example, consider this simple scheme. Imagine you want to store data about
customers, each of whom has a last name field. One partitioning scheme is to create
26 identical databases and assign each one a letter of the alphabet. Then, whenever
you want to look up data about John Smith, you first connect to the S database, and
then you fetch the data you want. The single-database solution, where all last names
are stored, would have 26X more capacity added to it because each of the 26 databases
contains all last names of a single letter of the alphabet. This process of partitioning a
database is called sharding, and we’ll delve into it in much more detail next.

5.2.2 Sharding defined: a parallel database architecture for massive scaling

The term sharding was coined by Google engineers and popularized through their
publication of the BigTable architecture. But the concept of shared-nothing database

Figure 5.1 Statistics that show why sites
such as eBay can’t survive with a centralized
database . That database must be partitioned
into multiple databases. Partitioning
(or sharding) is a critical strategy for scaling.

partitioning on which sharding is based has been around for a decade or more. There
have been many implementations over this period, particularly high-profile, in-house-
built solutions by internet leaders such as eBay , Amazon , Digg , Flickr , Skype , YouTube ,
Facebook , Friendster , and even Wikipedia .

SHARDING A decomposition of a database into multiple smaller units (called
shards) that can handle requests individually. It’s related to a scalability concept
called shared-nothing that removes dependencies between portions of the
application such that they can run completely independently and in parallel
for much higher throughput.

There was a time when you scaled databases by buying bigger, faster, and more ex-
pensive machines. Whereas this arrangement is great for big iron and database ven-
dor profit margins, it doesn’t work so well for the providers of popular web-facing
services that need to scale past what they can afford to spend on giant database
servers (and no single database server is big enough for the likes of Google, Flickr,
or eBay). This is where sharding comes in. It’s a revolutionary new database archi-
tecture that, when implemented at Flickr, enabled that service to handle more than
one billion transactions per day, responding to requests in less than a few seconds;
and that scaled linearly at low cost. It does sound revolutionary, doesn’t it? Let’s look
at it more closely.

SHARDING IN A NUTSHELL

In the simplest model for partitioning, as dia-
grammed in figure 5.2, you can store the data for
User 1 on one server and the data for User 2 on
another. It’s a federated model. In a system such
as Flickr, you can store groups of 500,000 users
together in each partition (shard). In the simple
two-shard design in figure 5.2, the criteria for
shard selection is odd- versus even-numbered user
identification values.

The more you examine sharding, the more
advantages you’ll discover:

■ High availability— If one box goes down, the
others still operate. In the simple model,
when some users stop getting service, the
rest of the service is unaffected. Normally,
there’s some replication; even if a box with
a shard goes down, its users can still be serviced on the replicated server.

■ Faster queries— Smaller amounts of data in each user group mean faster querying.
Services with a lot of experience with their particular usage pattern and database
structure learn how to best partition their database onto shards to keep queries
fast enough to keep users satisfied.

Designing and architecting for internet scale: sharding 105

User 1
User 2
User 3
User 4

User 1
User 3

User 2
User 4

Figure 5.2 Basic database sharding
partitions the database based on who
will access that part of the service. In
this example, the criteria are that odd-
numbered users go in one partition and
even-numbered go in the other.

106 CHAPTER 5 Designing and architecting for cloud scale

■ More write bandwidth— With no master database serializing writes, you can write
to many shards in parallel. This increases your write throughput. Writing is the
major bottleneck for many websites.

The bottom line is that sharding allows your application to do more work. It pro-
vides a parallel back-end, which means your application can do more things simul-
taneously. It can handle higher user loads, particularly when writing data, because
there are parallel paths through your system on something that normally throttles
performance: database writes. You can load-balance web servers that access shards
over different network paths. These paths are processed by separate CPUs that
use separate caches of RAM and separate disk I/O paths. The result is that few
bottlenecks limit your application’s performance. Now, let’s look at a real example
to substantiate this further.

WHY SHARD (OR PARTITION) YOUR DATABASE?

Let’s take Facebook as an example. In early 2004, mostly Harvard students used
the site as an online yearbook. A single beefy server handled the entire storage
requirements and query load on the database. Fast-forward to 2008, when Facebook
application-related page views were about 14 billion per month (more than 5,000
page views per second, each of which required multiple back-end queries to satisfy).
In addition to query load , with its attendant IOPs, CPU, and memory cost, there’s
also storage capacity to consider.

Today, Facebook stores 40 billion physical files to represent about 10 billion photos,
which is over a petabyte of storage. Even though the photo files aren’t likely in a
relational database, their metadata, such as identifiers and locations, still requires a
few terabytes of storage to represent the photos in the database. You can be sure that
originally Facebook didn’t have terabytes of storage available to store photo metadata.
And it correctly wasn’t originally designed that way, because you can’t know the exact
usage patterns that will drive the best sharding strategy until you observe user behaviors
as they interact with your application.

At some point during the development of Facebook, the company reached
the physical capacity of its database server and probably suffered a lot of user
dissatisfaction while it worked to rearchitect. The moot question was whether to
scale vertically by buying a more expensive, beefier server with more RAM, CPU
horsepower, disk I/O, and storage capacity; or to spread data across multiple
relatively cheap database servers.

As we discussed earlier, if your service has rapidly changing data (lots of writes)
or is sporadically queried by many users in a way that causes your working set not to
fit in memory (lots of reads, leading to lots of page faults and disk seeks), then your
primary bottleneck will likely be I/O. This is typically the case with social media sites,
such as Facebook , LinkedIn , Blogger , MySpace , and even Flickr . In such cases, it’s
either prohibitively expensive or physically impossible to purchase a single server to
handle the load on the site. Sharding the database, although challenging to design and
implement correctly, provides the best performance and highest cost savings relative
to the increased complexity of the system.

5.2.3 How sharding changes an application

In a well-designed application, the primary change sharding adds to your core applica-
tion code is that instead of code that opens a single database and then does a query,
such as this:

string connectionString =
 ConfigurationSettings.AppSettings["ConnectionInfo"];
OdbcConnection conn = new OdbcConnection(connectionString);
conn.Open();

OdbcCommand cmd = new OdbcCommand("SELECT Name, Address FROM Customers
 WHERE CustomerID= ?", conn);
OdbcParameter param = cmd.Parameters.Add("@CustomerID", OdbcType.Int);
param.Value = customerId;
OdbcDataReader reader = cmd.ExecuteReader();

The actual connection information about the database to which it should connect
depends on the data you’re trying to store or access. You add a method GetDatabase-
For () that opens one of many databases based on a customerID parameter. Now, you
have the following:

string connectionString = GetDatabaseFor(customerId);
OdbcConnection conn = new OdbcConnection(connectionString);
conn.Open();

OdbcCommand cmd = new OdbcCommand("SELECT Name, Address FROM Customers
 WHERE CustomerID= ?", conn);
OdbcParameter param = cmd.Parameters.Add("@CustomerID", OdbcType.Int);
param.Value = customerId;
OdbcDataReader reader = cmd.ExecuteReader();

We assume here that the GetDatabaseFor() method knows how to map a customer
ID to a physical database location. For the most part, everything else should re-
main the same, unless the application uses sharding as a way to parallelize queries
and not just access. The seemingly minor change of adding the GetDatabaseFor()
method provides an application with a database architecture quite different from a
traditional one.

5.2.4 Sharding in contrast with traditional database architectures

To understand how different and how powerful sharding is, let’s contrast a sharded
database with a traditional one in this section.

DATA ARE DENORMALIZED

Traditionally, we normalize data. Normalizing means you pull the data apart and relate
data elements in a new record to the tables used to store the range of possible standard
values. For example, if a user has a relationship status that has a fixed set of possible
values (single, married, and so on), normalized data retains only an index into the
relationship status table. Data are splayed out into tables without anomalies and then
joined again when you need to use them. This makes databases smaller and easier for
humans to understand but decidedly non-scalable.

Designing and architecting for internet scale: sharding 107

108 CHAPTER 5 Designing and architecting for cloud scale

But in sharding, the data are denormalized —you store together data that are used
together. Every user record in this example retains the relationship status with the
record and not an index into a single relationship status table. Now, if you need to
move the data, it’s all intact and doesn’t have to refer to a table in a database that’s
shared by many and acts as a single point of congestion.

This doesn’t mean you don’t also segregate data by type. You can keep a user’s
profile data separate from their comments, blogs, email, media, and so on, but the
user profile data is stored and retrieved as a whole. Although we don’t know the top-
secret internal workings of Facebook, the company must be employing something
similar based on observed behavior and performance. This is a very fast approach. You
get a blob of data and store a blob of data. You don’t need any joins and can write data
with one disk write.

DATA ARE PARALLELIZED ACROSS MANY PHYSICAL INSTANCES

Historically, database servers are scaled up (see figure 5.3). You buy bigger machines
for more power. But it’s not difficult to reach the limit of the server, the database,
or both.

With sharding, the data are parallelized, and you scale by expanding horizontally.
You can get more work done because it can be done in parallel. And as figure 5.4
implies, there’s no limit to how many databases you can put to work.

DATA ARE KEPT SMALL

The larger a set of data a server handles, the harder it is to cache intelligently, because
you have such a wide diversity of data being accessed. You need huge amounts of RAM
that may not even be enough to cache the data when you need it. By isolating data into
smaller shards, the data you’re accessing is more likely to stay in cache. Smaller sets of
data are also easier to back up, restore, and manage.

Starter system:
Small server + small database

Expanded system:
Large server + large database

Figure 5.3 The traditional approach
to scaling a database . Bigger servers
drive bigger databases. But the system
is throttled by how fast the server and
the disk subsystem can handle writes,
and it quickly reaches its limits when
dealing with internet scale.

DATA ARE MORE HIGHLY AVAILABLE

Because shards are independent, a failure in one doesn’t cause a failure in another.
And if you make each shard operate at 50 percent capacity, it’s much easier to upgrade
a shard in place. Keeping multiple data copies within a shard also helps with redun-
dancy, making the data more parallelized so more work can be done on the data.

You can also set up a shard to have master-slave (where the master database is the
authoritative source and the slave databases are synchronized to it) or dual master
(where each server functions as both a master and a slave to the other server)
replication to avoid a single point of failure within the shard. If one server goes down,
the other can take over.

DATA AREN’T REPLICATED

Replicating data from a master server to slave servers is a traditional approach to scaling.
Data are written to a master server and then replicated to one or more slave servers. At that
point, read operations can be handled by the slaves, but all writes happen on the master.

Obviously, the master becomes the write bottleneck and a single point of failure.
And as load increases, the cost of replication increases. Replication costs in CPU,
network bandwidth, and disk I/O. The slaves fall behind and have stale data.

Now that you’ve learned about the sharding concept and its attributes, let’s explore
the various common approaches to partitioning databases into shards.

5.2.5 Sharding in practice: the most common database partitioning schemes

Continuing to peel the onion, we’ll discuss the most common types of sharding. The
way the database is partitioned needs to match the characteristics of the application
and its usage patterns. Do you separate out features, each to its own database? Should
you divide segments of users to each have a separate database? Or is it best to use an
even more sophisticated scheme, because your system may need to be repartitioned
over and over as it grows? You have to make these choices early. To make an informed
decision, you need to understand how your application is used.

VERTICAL PARTITIONING

A simple way to segment your application database is to move tables related to spe-
cific features to their own server. For example, placing user profile information on

Designing and architecting for internet scale: sharding 109

Internet scaled system:
Many commodity servers + many parallel databases

Figure 5.4 The sharding approach to database scaling uses more modest servers (usually based on
cheap commodity hardware) with modest databases, where each server and its associated database
takes on a portion of the database load. A good partitioning scheme balances the load and allows
continued expansion as the application continues to scale.

110 CHAPTER 5 Designing and architecting for cloud scale

one database server, putting friend lists
on another, and using a third for user-
generated content, such as photos and
blogs, may make sense.

Figure 5.5 shows a hypothetical social
networking site that employs vertical
database partitioning (the real social
networks guard their inner architectures
like state secrets). The key benefit of this
approach is that it’s straightforward to
implement and has low impact on the
application as a whole. The drawback here
is, if the site experiences additional growth,
it may be necessary to further shard a
feature-specific database across multiple
servers (for example, handling metadata
queries for 10 billion photos by 400 million
users may be more than a single server
can handle; but not many services will see
Facebook’s growth profile).

RANGE-BASED PARTITIONING

When the entire data set for a single feature or table needs to be further subdivided across
multiple servers, it’s important to ensure that the data is split up in a predictable manner.
One approach to ensuring this predictability is to split the data based on value ranges that
occur within each entity. For example, you can split sales transactions by what year they
were created or assign users to servers based on the first digit of their zip code.

The main problem with this approach is that if the value whose range is used for
partitioning isn’t chosen carefully, then the sharding scheme leads to unbalanced
servers. In the previous example, splitting up transactions by date means that the
server with the current year gets a disproportionate amount of read and write traffic.
Similarly, partitioning users based on their zip code assumes that your user base is evenly
distributed across the different zip codes. But this fails to account for situations where
an application is popular in a particular region and the fact that human populations
vary across zip codes.

KEY- OR HASH-BASED PARTITIONING

Key- or hash-based partitioning is often a synonym for user-based partitioning for
Web 2.0 sites. With this approach, each entity has a value that can be used as input
into a hash function whose output is used to determine which database server to use.
For example, suppose you have 10 database servers, and your user IDs are numeric
values that are incremented by 1 each time a new user is added. The hash function
can perform a modulo operation on the user ID with the number 10 and then pick a
database server based on the remainder value. This approach should ensure a uni-
form allocation of data to each server.

Figure 5.5 A hypothetical social networking
site that employed vertical (feature-based)
partitioning when it implemented sharding to
help it scale its application to ever-larger
numbers of users

Videos

Blogs

Friend lists

MySocialNetworkingSite.com

Fan pages

Photos

User profiles

The key problem with this approach is that it effectively fixes the number of database
servers, because adding new servers means changing the hash function—which,
without downtime, is similar to being asked to change the tires on a moving car. This
example illustrates the critical importance of thinking ahead when making sharding
design decisions.

Designing and architecting for internet scale: sharding 111

Tips for avoiding unbalanced sharding
Avoid bad hashing algorithms. You don’t want to shard based on the first character
of a username because our culture has many more M than Z names.

Avoid the problem of users suddenly becoming unequal. The day Sarah Palin was
announced as the vice presidential pick, one user became much more active than
any other in any type of social networking service.

DIRECTORY-BASED PARTITIONING

A loosely coupled approach to this problem is to create a lookup service that knows
your current partitioning scheme and abstracts it away from the database access code.
This means the GetDatabaseFor () method hits a web service or a database that
stores/returns the mapping between each entity key and the database server it resides
on. This loosely coupled approach means you can perform tasks such as adding serv-
ers to the database pool or change your partitioning scheme without having to impact
your application.

Remember the previous example, where there are 10 servers and the hash function
is a modulo—the remainder after division of one number by another—operation? In
spite of modulo being simple, it has a uniform distribution. Let’s say you want to
add five database servers to the pool without incurring downtime. You can keep the
existing hash function, add these servers to the pool, and then run a script that copies
data from the 10 existing servers to the 5 new servers based on a new hash function
implemented by performing the modulo operation on user IDs using the new server
count of 15. After the data is copied over (this is tricky because users are always
updating their data), the lookup service can change to using the new hash function
without any of the calling applications being any wiser that their database pool grew
50 percent and that the database they went to for John Doe’s pictures 5 minutes ago
is different from the one they’re accessing now. Similar to any solution that creates
a highly efficient layer of abstraction (or indirection), this is highly scalable. And
after you write scripts to be able to migrate users to/from shards, you can tweak and
rebalance to make sure all your hardware is utilized efficiently. The downside of this
approach is that it’s complicated.

In the next section, we’ll explore the challenges and problems with sharding. You
need to understand that although it’s extremely powerful, sharding shouldn’t be used
too early or too often.

112 CHAPTER 5 Designing and architecting for cloud scale

GetDatabaseFor ()

A

A

B C

Figure 5.6 Rebalancing data. Initially, the GetDatabaseFor() function pushed
requests for partition A to the center server. But that server’s database shard has
gotten too large and needs to be rebalanced. All or a portion of database A is
moved to the server on the left. After that data is successfully moved, the function
GetDatabaseFor() is modified so that future requests for shard A are directed
to the leftmost server.

5.2.6 Sharding challenges and problems

Sharding isn’t perfect. It has a few problems, not the least of which is that fact that it’s
very complicated.

When a database has been sharded, new constraints are placed on the operations
that can be performed on the database. These constraints primarily center around the
fact that operations across multiple tables or multiple rows in the same table no longer
will run on the same server. The following sections describe some of the constraints
and additional complexities introduced by sharding.

REBALANCING DATA

What happens when a shard outgrows your storage and needs to be split? Let’s say a
user has a particularly large friends list that blows your storage capacity for the shard.
You need to move the user to a different shard. This can be a major problem. Mov-
ing data from shard to shard may require a service shutdown if this isn’t designed
extremely carefully.

Rebalancing must be built in from the start. Google’s shards automatically
rebalance. For this to work, data references must go through some sort of naming
service so they can be relocated. In addition, references must be invalidateable so the
underlying data can be moved while you’re using it. You can see a simple example
of this in figure 5.6.

Using a scheme such as directory-based partitioning makes rebalancing more
feasible at the cost of increasing the complexity of the system and creating a new single
point of failure (the lookup service/database).

JOINING DATA FROM MULTIPLE SHARDS

To create a complex friends page, a user profile page, or a thread discussion page, you
must pull together lots of different data from many sources. With sharding, you can’t
just issue a query and get back all the data. You have to make individual requests to
your data sources, get all the responses, and build the page. Fortunately, because of
caching and fast networks, this process is fast enough that your page-load times can be
excellent. In the social-networking examples we’ve been using, human response time
is a pretty forgiving upper bound.

REFERENTIAL INTEGRITY

It’s extremely difficult to enforce data integrity constraints such as foreign keys in a
sharded database. Most relational database management systems don’t support for-
eign keys across databases on different database servers.

Sharded applications that require referential integrity must often enforce it
in application code and run regular SQL jobs to clean up dangling references.
Consequently, dealing with data-inconsistency issues due to denormalization and lack
of referential integrity can become a significant development cost to the service.

LITTLE SUPPORT

Finally, the biggest problem with sharding may be the lack of experience and expertise
you’ll find to help you. You’ll get ample help with traditional RDBMS tools. Thou-
sands of books, experts, tool chains, and discussion forums can help you resolve your
problem when something goes wrong or you’re wondering how to implement a new
feature. But the Eclipse IDE won’t have a shard view any time soon, and you won’t find
any automated backup and restore programs for your shard.

With sharding, you’re on your own, although the future looks promising. LiveJournal
makes its tool chain available. Hibernate has a library under development. MySQL has
added support for partitioning. But in the short term, sharding is something you must
implement yourself.

5.2.7 Sharding in real life: how Flickr’s sharding works

Let’s look at how Flickr implemented sharding, to understand the concept more deeply.
We’ve drawn this discussion from materials produced by Flickr’s CTO Cal Henderson as
well as the website High Scalability at http://highscalability.com , which is an excellent
resource for sharding in practice and other topics relating to scaling to enormous lev-
els. Let’s begin by examining the overall profile of the Flickr service (see figure 5.7).
Clearly, this service has a large number of registered users and a lot of data.

FLICKR’S DATABASE PARTITIONING SCHEME

Flickr’s equivalent to the GetDatabaseFor() method assigns a random number for new
accounts and uses this number as an index into the correct shard for this new user:

ShardToUse = RandomNumber mod NumberofShards

Designing and architecting for internet scale: sharding 113

http://highscalability.com

114 CHAPTER 5 Designing and architecting for cloud scale

My data is stored on my shard, but the record of me performing an action on your
comment is stored on your shard.

Shards contain a slice of the main database. The main database employs 100 percent
replication in a dual-master architecture. Migration of certain users is done manually
from time to time. A minor percentage of extreme power users destroy the nice balance
between shards, and it’s important to restore that balance by migrating these types of
users off to a different area of the database. Even on a site as big and active as Flickr,
migration can be done manually.

Each shard is designed to hold approximately 400,000+ users’ data (apart from the
photos themselves). Interestingly, a lot of data is stored twice. For example, a comment is
part of the relation between the commenter and the commentee. Where is the comment
stored? Both places. This is a good tradeoff between performance and disk use.

Certain operations, such as clicking a favorite, access several shards. First, the
photo owner’s account is pulled from cache to get the shard location for this user.
Then, it pulls my information from cache to get my shard location. Next, a distributed
transaction is started to answer a question like, “Who favorited my photo?”

FLICKR’S RELIABILITY STRATEGY

To get rid of replication lag, on every page load, the user is assigned to a bucket. If a
host is down, Flickr goes to the next host in the list; if all hosts are down, it displays an
error page. Flickr doesn’t use persistent connections; it builds connections and tears
them down. Every page load tests the connection. You can see the architecture that
evolved to handle this level of demand in figure 5.8.

Each server in a shard is 50 percent loaded. Flickr can shut down half the servers
in each shard. It’s designed such that one server in the shard can take the full
load if a server of that shard is down or in maintenance mode. To upgrade, all the
company has to do is shut down half the shards, upgrade that half, and then repeat
the process.

As you’ve seen, sharding is not only a powerful strategy for building high-scalability
applications but also a common one. Google, Yahoo!, Flickr, Facebook, and many other
sites that deal with huge user communities have found common ground that database

Figure 5.7 The profile of the Flickr photo-sharing site, showcasing its
large number of users and data

partitioning in this way is a must to enable a good user experience. Next, let’s look
at how to design for scale that isn’t necessarily based on a large user community—it
may be compute-based—and that isn’t consistent over time—demand ebbs and flows.
For these scenarios, cloudbursting is proving to be the standard solution that’s
commonly employed.

5.3 Designing for on-demand capacity : cloudbursting
In the last section, we focused on the database issues that most inhibit scale. They
can hopelessly throttle a cloud application that suddenly starts to see a dramatic
spike in popularity and growth. Before you anticipate the kind of scale that
warrants refactoring for sharding, you may have an application that runs in your
data center that can or already does get to the point where it needs more capacity.
You could buy more servers and keep them unused and on standby for when this
situation occurs. Or you could keep only the capacity your application needs most
of the time and, when it needs more, expand not within your own data center but
out to the cloud. Think of it like having unexpected houseguests and not enough
beds; you don’t buy a bigger house with more bedrooms, you put up the overflow
in a nearby hotel.

Load balancers

Squid caches

NetApps

Dual-master shards

Big Search Engine

Memcached cluster

PHP App servers

Storage managers

Dual-tree central
database

Figure 5.8 Flickr’s architecture includes many levels. First is load balancing as incoming connection
requests arrive. Squid cache s are open-source web-delivery systems that operate as reverse proxies for
HTML pages and images. The PHP App Servers connect to the shards and keep the data consistent.
The storage managers do the actual mapping from an index to the correct shard. NetApps are for
mass storage of photos. Their fundamental database architecture uses dual masters for each shard.
This gives them resilience in the case of failure. The dual-tree structure is a custom set of changes to
MySQL that allows scaling by incrementally adding masters without a ring architecture. The central
database includes data, such as the users table, which includes primary user keys (a few different IDs)
and a pointer to which shard a user’s data can be found on. The Big Search Engine is a replication of
the database Flickr wants to search.

Designing for on-demand capacity : cloudbursting 115

116 CHAPTER 5 Designing and architecting for cloud scale

Another scenario where a data center application may need additional capacity
is when a portion of your application involves highly sensitive data, and you want
to process it only inside your data center. The rest of the application, which also
presumably needs additional capacity you can’t provide in the data center, runs in
the cloud. You can handle both these capacity-related issues by careful design using a
technique called cloudbursting.

5.3.1 Cloudbursting defined

What is cloudbursting? Let’s define it more precisely. In earlier chapters, you read
that the public cloud is a single application running on an elastic infrastructure
that a third-party service provider buys and maintains. It’s shared by many users
simultaneously, all paid for on a pay-as-you-go basis. In chapter 4, we covered pri-
vate clouds, where the third-party service provider attribute is dropped. Now, with
cloudbursting, let’s modify the single-application context as well and talk about
applications that partially run in a local data center and partially in a public or
private cloud.

CLOUDBURSTING In 2009, the National Institute of Standards and Technology
(NIST) published its formal definition of cloud computing, which included
the concept of cloudbursting as cloud infrastructure that is a composition of two
or more clouds (private, community, or public) that remain unique entities
but are bound together by standardized or proprietary technology that enables
data and application portability.

The bursting concept has been applied in IT before but normally to resource
allocation and automated provisioning /deprovisioning of bandwidth. Today, in the
cloud, it’s being applied to resources such as application servers, application delivery
systems, and other infrastructure required to provide on-demand computing environ-
ments that expand and contract as necessary without manual intervention.

The (alternative) negative definition of a cloudburst
Here’s a negative definition of the term cloudburst, by Nicholas Carr : “[It is] the
failure of a cloud-computing environment due to the inability to handle a spike in
demand.” Carr was reporting on some issues that came out of poor performance
from Intuit’s cloud; he said, “The only way to do cloud computing efficiently is to
share the cloud—to establish a broad, multitenant grid (or a number of them) that
balances the loads of many different companies. Otherwise, it’ll be one cloudburst
after another, [alternating with] a whole lot of underutilized capital assets.”

5.3.2 The best of both worlds: internal data center plus cloud

Suppose an organization appreciates the benefits of cloud computing but would prefer
to take a more careful and measured approach. It has the option of a hybrid approach

Designing for on-demand capacity : cloudbursting 117

for moving to the cloud, where core business processes remain inside the firewall and
periodic or overflow processing happens on the cloud. This best-of-both-worlds design
pattern was the genesis of cloudbursting.

INTERNAL APPLICATION THAT ADAPTS DYNAMICALLY

Cloudbursting describes an evolving model that marries the traditional safe enterprise-
computing model with cloud computing. The cloud shoulders the burden of some
of an application’s processing. For example, the cloud provides the basic application
functionality, whereas more critical (revenue-generating) functions continue to be
served from within the controlled enterprise data center.

BURSTS OUT TO THE CLOUD WHEN DEMAND SPIKES

How do you move from your local data center to the cloud? You need to add load-
balancing (or some strategic control point that acts much the same). Such load-
balancing provides a means to redirect requests to an external cloud in the event
that corporate resources are depleted. When a request is received, the global load-
balancer decides which data center (corporate or cloud) should handle the request
based on its understanding of capacity. Because the data-center application suddenly
comes out of the data center and immediately enters the cloud, this concept began
being described as bursting.

5.3.3 Cloudbursting business case

The strongest business case for cloudbursting is both simple and compelling: seasonal
or event-based peaks of traffic that push infrastructure over its capacity. But because
they aren’t consistent, they don’t justify the cost of investing in additional hardware
that would otherwise sit idle.

It’s hard to provision an application correctly. To err on the side of safety, most data-
center applications are overprovisioned, which has led to consistently low utilization
of data-center compute resources. Often, data centers are either overprovisioned with
servers that sit idle most of the time or have insufficient capacity planning that causes
outages or (at a minimum) poor service for users. Buying exactly the right processing
capacities from the start is impossible. Even with the best estimate, you’ll either have
excessive capacities or will miss some spikes.

Let’s look at a cost comparison between data-center provisioning and elastic cloud
provisioning.

AN EXAMPLE BUSINESS CASE

Take a hypothetical example: Reign.net provisions an application with a server costing
$500. The server handles the target application it will be running at baseline user load.
If Reign.net tries to provision for a huge two-day spike with 10 Amazon EC2 medium
CPU virtual machines to handle spikes (the price is $0.20 per hour each), then the total
cost of handling the projected spike is around $48. To adequately cover this spike locally
would require an expense of $5,000 for 10 servers that would be idle most of the time.

Given this compelling business case, you may ask why you wouldn’t move everything
to the cloud. It’s important to note several reasons:

118 CHAPTER 5 Designing and architecting for cloud scale

■ Cloud computing solutions are generally more expensive when it comes to long-
term consumption (compared to existing offerings by hosting companies).

■ Cloudbursting is a more complex solution to implement (from the delivery and
maintenance standpoints).

■ Today, using any cloud still comes with a certain vendor lock-in cost. When you
have your entire infrastructure in a single cloud, it’s not easy to move it to a dif-
ferent cloud (particularly because we don’t have a well-established cloud com-
puting market, or standards, or even portability yet).

To reduce the dependency on a single cloud provider, Reign.net can use several cloud-
computing providers, picking whichever is better for the situation—but that further
complicates the solution and makes it more expensive.

THE EVENTSEER CLOUDBURSTING BUSINESS CASE

Going back to a real-world example that we mentioned earlier, let’s look at how
Eventseer architected its solution to include cloudbursting. First, let’s review the
business problem the company was trying to solve. Eventseer is an academic event
tracker that contains some 8,000 event listings. It has a database of 573,000 peo-
ple, 4,000 research topics, and 3,000 organizations, each of which has its own
page. This adds up to almost 600,000 worth of pages. All the pages are highly
interconnected, so each added event tends to require a considerable number of
page updates.

As traffic grew, Eventseer was becoming slower. Navigating the site involved
noticeable delays. Traffic analysis showed the average server load to be consistently
high. Some of the obvious solutions, such as reducing the number of database queries
per page view or caching rendered pages, were helpful but not satisfactory.

The ultimate bottleneck was that each and every request was sent through the full
dynamic page-rendering cycle. With increasing traffic, that overhead compounded.
Spreading the load across additional servers only addressed the symptom, not the
core problem. What pushed the site over the edge was search-engine traffic: being
continuously pounded by multiple search engines crawling those 600,000 dynamically
generated pages took its toll.

Eventseer.net decided to explore generating static pages every night to handle
search-engine crawlers, first-time users, and other non-authenticated users for whom
static pages are sufficient. This would speed up those users’ experience dramatically and
free up CPU cycles for the many fewer registered visitors who must have dynamically
generated pages. Great solution, but it created a business problem because generating
all 600,000 of these static pages every night took seven days on a single server. This led
them to a cloudbursting architecture.

And architecture is the next topic we need to delve into. Assuming a compelling
business case for your situation, how do the internal data center and the cloud
communicate, and how does the application shift from one to the other? You’ll find
the answers in the next section.

5.3.4 Cloudbursting architecture

A simple architecture diagram shows that cloudbursting, although backed by some
compelling business-case numbers, isn’t for the faint of heart. It’s complicated.
Figure 5.9 shows a highly simplified cloudbursting architecture .

Static page generation has no cross-page dependencies and can easily be split
across several servers. Eventseer, from the earlier example, wanted to make sure
the pages were done in a single night. The site divided the processing tasks into
batches that each took roughly five hours to complete and split them across as
many Amazon EC2 instances as needed (25 in this case). The cost was about
$12.50.

You can see why IaaS works best for cloudbursting: an Amazon Machine Image
(AMI) with the identical packages and software as your production server must be
created. You only have to make sure the instances launched from that AMI are working
with the freshest available data.

For Eventseer, the full database is regularly synced with Amazon Simple Storage
Service (S3)—see figure 5.10. After launching the EC2 instances, each instance is
instantiated with the latest data from S3. When the processing job is finished, the
results are sent to the production server, the EC2 instances terminate themselves, and
Eventseer stops paying for them.

Designing for on-demand capacity : cloudbursting 119

Load
Balancer

Enterprise Data Center

Cloud
Provider

Figure 5.9 A highly simplified cloudbursting architecture showing that most
users are directed by the load-balancer to the data center. After capacity is reached,
additional users are directed to the cloud-resident portion of this application.

120 CHAPTER 5 Designing and architecting for cloud scale

Figure 5.10 Eventseer’s
cloudbursting architecture.
Eventseer’s data center operates
the production servers that serve
all pages to site visitors, the master
database, and the master queue
of pages that need updating. The
database is synced regularly over
to Amazon’s S3 so a replica of the
current database is resident in the
cloud when needed. Twice a day,
an array of AMIs are spun up in
EC2, and each is provided a copy
of the database replica. Work to
perform comes from the queue,
which is updated periodically. Final
static pages are sent back to the
production data center at Eventseer.

Eventseer Data Center

Master DB

Master queue

Amazon Web Services Cloud

S3

DB replica

Downloaded as new
instances start

EC2

Informs instances
about page updates

SQS

Queue replica

Synced
regularly

Synced
regularly

Results

Keeping the static files up to date is the most difficult part of Eventseer’s dynamic-
to-static conversion. Whenever an event is added, hundreds of pages may have to be
updated. It would be too time-consuming and unnecessary to do these updates on the
fly because it’s not crucial that all pages be immediately updated. Delegating this task
to regularly executed cloud-based servers is therefore workable.

To keep track of pending changes, Eventseer sets up a queuing system using Amazon’s
Simple Queue Service (SQS). Each page-update request is first added to a local queue
that’s regularly kept in synch with a remote queue on Amazon. The motivation for
having two separate queues is for those times when Amazon is unavailable.

Twice a day, the required number of EC2 instances are automatically launched on
Amazon. The most current version of the database is fetched from S3 and installed on
each instance. Then, page-update requests are fetched one at a time from SQS until
the queue is empty. Finally, all the generated static files are sent to the production
server and installed at their correct location. When the EC2 instances are no longer
needed, they shut themselves down.

This solution, when compared with the cost of purchasing dedicated server capacity,
proved inexpensive for Eventseer.

5.3.5 A recipe for implementing cloudbursting

Let’s get more specific and prescriptive now and walk through what your design has to
include to cloudburst. Let’s assume that at the top level, this application has an input
task queue for work that it needs to do and an output queue for the results of the work
it performs.

You begin by adding a Manager component to your system (it can be a separate process

or a loop in a background thread). It continuously watches for the number of incoming
requests (user sessions, perhaps) to be processed. Should it become obvious that your
processing capacities aren’t enough to keep up with the demand, it will issue requests to
the cloud-computing API to deploy new virtual machines (Amazon EC2 already has such
a REST-based API available; Windows Azure and others will follow suit).

Each virtual machine usually comes preconfigured with a worker role. This
preconfiguration can be done by

■ Deploying an application or scripts to the cloud (if this cloud service is a PaaS
provider, such as Google App Engine or Windows Azure)

■ Uploading a preconfigured VM image (if the cloud is an IaaS provider, such as
Amazon EC2)

When this worker boots up in the cloud, it only needs the addresses of the task and re-
sult queues to start processing jobs. These parameters are usually passed as arguments
along with the deployment calls.

To let the cloud workers access these queues in a secure way, you need to expose
them via some encrypted service API, implemented in a flavor of communication
framework of your choice (such as Amazon SQS).

When the Manager detects that you no longer need the same processing power
from the cloud, it shuts down these workers, again providing you the cloud benefit of
only paying for what you use.

Designing for on-demand capacity : cloudbursting 121

A cloudbursting appliance
Nothing yet exists that meets the general need for cloudbursting, but it soon will. The
idea would be to have a virtualized server environment that runs in your data center
that builds virtual machine instances compatible with the cloud provider of choice.
When the local environment is taxed to its limits, the next virtual machine instances
are created by the same appliance up on the cloud, and the appliance handles
all data-center-to-cloud communication transparently. Local users never know the
application had to expand out to the cloud.

Note that the IBM cloudbursting appliance isn’t this. It’s useful only for building
private clouds and wasn’t appropriately named.

5.3.6 Cloudbursting: calling out for standards

Provisioning instances in Amazon EC2 is relatively easy; moving live workloads across
a wide area network isn’t. In most modern dynamic applications, the idea of hav-
ing a hot cloud standby or a prebuilt virtual machine waiting in the wings would solve
a lot of problems. But in reality, a number of complexities need to be overcome.
These complexities range from network optimization to secure data transfer and
replication to load-balancing across geographically diverse hosting environments,
to name a few.

122 CHAPTER 5 Designing and architecting for cloud scale

5.3.7 The data-access problem with cloudbursting

Cloudbursting promises to maximize agility while minimizing cost, but there’s the
nagging question of what exactly to do about the data such distributed applications
require or generate. The original data-center-resident version of this application
probably never envisioned that it might expand to the cloud; but when it does,
where does it get its input data, and where should it store its output data? (In the
Eventseer case study, the company addressed this head-on by having all interactions
with the cloud extension of the data center in batch mode—see case 4 in the follow-
ing subsections.)

Let’s look at several strategies for dealing with cloudburst data. The following
are five scenarios as described by Joe Weinman of AT&T Business Solutions . One
of them may fit both your application’s requirements and your enterprise’s overall
business model.

CASE 1: INDEPENDENT CLUSTERS

In the first scenario, minimal communication and data-sharing requirements exist
between the application instances running in the enterprise and cloud data centers.
Global load-balancers direct requests to either location, but the application instances
running in the cloud don’t need to communicate (much) with the ones in the enter-
prise data center. Because these load-balancers are probably already in place, you have
no significant marginal cost of infrastructure to enable cloudbursting—only a require-
ment to keep contextual information, such as resource allocation, current. Applica-
tions that involve data coming to and from users that doesn’t need to be saved between
sessions—such as generating downloadable videos from uploaded photos—may not
require much of a connection between the enterprise and the cloud.

Although this architecture provides excellent economics, it doesn’t cover all
situations. You may have data in the enterprise data center that needs to be accessed by
the cloud-resident application, or new data may be acquired or produced as the cloud-
based instances run. This must then be consolidated with what’s in the enterprise data
center. You’ll see how to handle such scenarios next.

Case study: USA.gov
USA.gov, one of the busiest U.S. government websites, has achieved significant cost
savings by embracing cloud computing. The U.S. General Services Administration
(GSA) has migrated all the core resources of the USA.gov web portal to Terremark ’s
IaaS platform, The Enterprise Cloud.

By cloudbursting to The Enterprise Cloud, USA.gov can maintain a small persistent
footprint and deploy on-demand scaling as traffic fluctuates. GSA said this migration
to the cloud has brought about a number of benefits and savings, such as avoiding
idle server costs while still accommodating huge traffic spikes, acting on users’
requests in real time, and applying security constraints on this platform. With
infrastructure flexibility at the foundation, GSA has found both cost savings and
capability improvement with its new cloud platform.

CASE 2: REMOTE ACCESS TO CONSOLIDATED DATA

The easiest approach to access and update enterprise data may be for application in-
stances running in the cloud to access a single-instance data store. The viability of this
approach depends on the pattern and intensity of reads and writes from the cloud
data center to the enterprise. It also depends on the bandwidth, latency, and protocol
support of the data-networking or storage-networking approach used to connect the
cloud application to the enterprise-based data. This can be block-oriented, network-
attached, content-addressed, or a database server.

CASE 3: ON-DEMAND DATA PLACEMENT

Placing cloud data centers on a global network backbone can enhance performance
and latency. But if I/O intensity and/or network latency are too high for remote ac-
cess, then any needed data that isn’t already in the cloud must be placed there at the
beginning of the cloudburst. Also, any changes must be consolidated in the enterprise
store at the end of the cloudburst. The question is, “How much data needs to get
where, and how quickly?”

You may require a large data set, either because all the data is needed for computation
(such as with seismic or protein-folding analysis) or because the pattern of reads is
unpredictable and as such needs to be present just in case. Then, even with fast file-
transfer techniques, you have three options:

■ Withstand delays when beginning cloudbursting (from trying to pass a lot of
data through a small pipe or by using physical disk delivery).

■

Move to more of an on-demand, pay-per-use approach for network capacity.
Pre-position a large-bandwidth pipe to quickly migrate the data, impacting cost.

■

CASE 4: PRE-POSITIONED DATA PLACEMENT

Pre-positioning the data in the cloud to support application/server cloudbursting can
be effective from a performance perspective. But it adds cost, because you must deploy
a full secondary storage environment and a metro or wide-area network. This impacts
the breakeven point for cloudbursting.

CASE 5: BUSINESS CONTINUITY /DISASTER RECOVERY PLUS CLOUDBURSTING

If the cloud location doubles as the data-mirroring or replication site for business
continuity/disaster recovery, then support for cloudbursting can come with little addi-
tional cost, such as new operational procedures. But this may imply a requirement for
bidirectional primary/secondary volumes. For example, data written at the enterprise
site is replicated to the cloud, whereas data written in the cloud is replicated to the
enterprise. And the primary/secondary volume designation must be fungible, or some
sort of distributed data management and possibly distributed record-locking strategy
must be implemented. Technology to do this is still evolving.

Understanding storage options is key for two reasons. First, the business case for
cloudbursting may change. Saving a little on virtual server hours looks less attractive if
you require expensive wide-area storage networking. On the other hand, an optimal
architecture can kill multiple birds with one stone—agility, business continuity, and
cost-minimization—while meeting transaction throughput and latency requirements

Designing for on-demand capacity : cloudbursting 123

124 CHAPTER 5 Designing and architecting for cloud scale

through distributed, on-net processing. Second, different scenarios require different
network interconnects between the enterprise and the cloud. The internet alone may
be fine if clusters are independent; but for many scenarios, you may require much
higher-speed mechanisms. We’ll focus on the various options for large and expanding
quantities of cloud storage in the next section.

5.4 Designing for exponentially expanding storage
In these days of Web 2.0, with picture and video sharing all the rage and some social
networks growing bigger than 400 million registered users, it’s not hard to under-
stand why we need to talk about exponentially expanding storage . It’s the rare ap-
plication that needs the kind of storage that YouTube , Flickr , and Facebook require
(see table 5.2). But even more modest applications are finding it desirable to include
video- or photo-upload capability. Many more applications need to be designed for
expanding storage than used to be the case. Not surprisingly, the cloud is excellent
for providing expanding storage capacity. Let’s address how applications take advan-
tage of this capability.

Table 5.2 Some very large data hoarders

YouTube 1 billion video views per day (11,574 views per second)

Facebook 15 billion photos (and 60 billion image files with replication for different sizes)

220 million new photos added every week

1.5 PB of storage for photos; growing at 25 TB per week

Flickr 2 PB of storage to serve 2 billion photos from 4 billion queries per day

400,000 photos added per day

PlentyOfFish 30+ million hits per day leading to 1.1 billion page views

1 TB/day serving 171 million images

6 TB storage array for millions of images uploaded per day

5.4.1 Cloud storage defined

Cloud storage is storage accessed over a network (internal or external) via web services
APIs. Cloud storage access APIs are typically RESTful in nature. Representational state
transfer (REST) is a style of software architecture for distributed hypermedia systems,
such as the World Wide Web itself. RESTful means conforming to the REST model of
an architecture consisting of clients and servers, where clients initiate requests to servers
and servers process requests and return appropriate responses.

Similar to thinking of compute as elastic thanks to server virtualization, you can
look at cloud storage as an abstracted layer of storage as opposed to the storage device
directly. As you can imagine, this simplifies integration and development, and facilitates
the introduction of many desirable features and options we’ll discuss here.

5.4.2 Amazon S3

Amazon’s S3 was the first and is the most successful cloud storage service. With the
release of S3 in March 2006, for the first time, a large pool of storage was available for
use where it was accessed via web services APIs on a nonpersistent network connection.
You had immediate availability of very large quantities of storage, which operated on a
pay-for-what-you use model. The most important attributes of cloud storage are that it
must be scalable, reliable, fast, inexpensive, and simple.

Amazon was able to benefit from a decade of work on its own storage system that had
all these requirements before exposing it to the outside world through a simple API.
This is why S3 worked so well from the start and took off as a highly successful service.

5.4.3 Example cloud storage API (using S3)

It’s useful to examine the API of the largest and most successful cloud storage service,
because just as the API to Amazon’s EC2 is being copied and may become a de facto
standard, so too may the S3 API become an industry standard.

The basic units of storage S3 deals with are object s and bucket s. Objects are the entities
used to write, read, and delete collections of data. Objects can be from 1 to 5 GB in
size. You can have an unlimited number of objects in S3. Objects are stored in buckets.
You can specify whether the bucket is located in the United States or Europe. (Other
locales will be available in the future. This becomes important when you’re dealing
with a specific country or region’s regulations, such as a locale’s privacy rules .) Access
to a bucket is secure and can only proceed through a unique developer-assigned key.
Within a bucket, each object can be made private, public, or with access rights granted
to specific users. See table 5.3.

Table 5.3 Overview of the Amazon S3 API

API call API description

GET Service The GET operation returns a list of all the buckets owned by the
authenticated sender of the request.

PUT Bucket The PUT request operation with a bucket URI creates a new bucket .
This is where you can specify a location constraint that affects where
your data physically resides (such as U.S. or Europe).

PUT requestPayment The PUT request operation with a requestPayment URI configures
an existing bucket to be Requester Pays or not. With Requester Pays
bucket s, the requester, instead of the bucket owner, pays the cost of
the request and the data download from the bucket. This is important
when you want to share data but not incur charges associated with
others accessing the data. You may, for example, use Requester Pays
buckets when making available large data sets, such as various kinds
of directories, reference data, and so forth.

GET Bucket A GET request operation using a bucket URI lists information about the
objects in the bucket if the requestor has READ access to the bucket.

Designing for exponentially expanding storage 125

126 CHAPTER 5 Designing and architecting for cloud scale

Table 5.3 Overview of the Amazon S3 API (continued)

API call API description

GET requestPayment A GET request operation on a requestPayment resource returns
the request payment configuration of a bucket : either Payer or
Requester.

GET Bucket Location A GET location request operation using a bucket URI lists the location
constraint of the bucket . This can be very important when verifying
that you’re complying with certain E.U. regulations pertaining to data
on E.U. citizens.

DELETE Bucket The DELETE request operation deletes the bucket named in the URI.
All objects in the bucket must be deleted before the bucket itself can
be deleted. Only the bucket owner can do this.

PUT Object The PUT request operation adds an object to a bucket . The response
indicates that the object has been successfully stored.

COPY Object The COPY operation creates a copy of an object already stored in
Amazon S3.

GET Object Objects are fetched using the GET operation . This operation returns
objects directly from Amazon S3 using a client/server delivery
mechanism.

HEAD Object The HEAD operation is used to retrieve information about a specific
object or object size, without fetching the object itself . This is useful if
you’re only interested in the object metadata.

DELETE Object The DELETE request operation removes the specified object from
Amazon S3. Once deleted, there is no method to restore or undelete
an object.

POST Object The POST request operation adds an object to a bucket using HTML
forms. This is an alternate form of PUT that enables browser-based
uploads.

Now, let’s look at some sample code using a few of these APIs, to see how simple they
are to use. First, the S3 API call to GET the service requires authentication with a valid
access key user_ID. Here’s the request:

GET / HTTP/1.1
Host: s3.amazonaws.com
Date: date
Authorization: signature

And here’s the response:

HTTP/1.1 200 OK
x-amz-id-2: id
x-amz-request-id: request_id
Date: date
Content-Type: type
Content-Length: length

Connection: close
Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<ListAllMyBucketsResult xmlns="http://doc.s3.amazonaws.com/2006-03-01">
 <Owner>
 <ID>user_id</ID>
 <DisplayName>display_name</DisplayName>
 </Owner>
 <Buckets>
 <Bucket>
 <Name>bucket_name</Name>
 <CreationDate>date</CreationDate>
 </Bucket>
 ...
 </Buckets>
</ListAllMyBucketsResult>

Next, the S3 API call PUT Bucket creates a new bucket identified by request_id. Here’s
the request:

PUT / HTTP/1.1

Host: destinationBucket.s3.amazonaws.com
Content-Length: 0
Date: date
Authorization: signature

And here’s the response:

HTTP/1.1 200 OK
x-amz-id-2: id
x-amz-request-id: request_id
Date: date
Content-Length: 0
Connection: close
Server: AmazonS3

The S3 API call for reading an object uses GET Object with the byte_range of the
object:

GET /destinationObject HTTP/1.1
Host: destinationBucket.s3.amazonaws.com
Date: date
Authorization: signature
Range:bytes=byte_range

The response is as follows:

HTTP/1.1 200 OK
x-amz-id-2: id
x-amz-request-id: request_id

Date: date
Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT

ETag: "etag"
Content-Length: length
Content-Type: type

Designing for exponentially expanding storage 127

http://doc.s3.amazonaws.com/2006-03-01

128 CHAPTER 5 Designing and architecting for cloud scale

Connection: close
Server: AmazonS3
file_content

These code fragments demonstrate that each of the calls is simple and conforms to the
standard HTTP GET and PUT structure. Each also has a Simple Object Access Protocol
(SOAP) formulation as well as these RESTful versions.

5.4.4 Costs

Detailed cost information is available from each cloud storage vendor, but Amazon
is setting the ceiling, and that ceiling is already low. Roughly, storage of a mod-
est size (under 50 TB) runs $0.15/GB/month with an additional $0.10/GB data
transfer in and $0.17/GB data transfer out. Amazon ties its services together by
making transfers between S2 and EC2 free. All costs are higher for buckets located
in Europe.

As low as these numbers look, be careful, because large-volume long-term storage
can turn out to be very expensive. For example, to store 1 PB (remember, that’s a
quadrillion bytes or 1,000 TB or 1 million GB) on the cheapest commodity raw drives
costs about $81,000. On EMC’s NS-960, this would cost $2,860,000; and on Amazon S3
for three years, it would cost $2,806,000. That’s not a typo! Granted, a petabyte is a lot
of data; but as you saw at the beginning of this section on storage, the big video- and
photo-sharing sites routinely get up to the petabyte levels.

S3 is about raw storage with no structure and no structured way for it to interact with
applications running in the cloud. One type of storage structure that has been built on
top of S3 is the ability to mount a file system so that applications think they’re dealing
with a file system as if they had formatted disk drives attached to each server.

5.4.5 Mountable file systems in the cloud

If the model of unstructured buckets containing objects of an arbitrary number
of bytes used by S3 and other cloud storage services isn’t the right model for an
application, you have another model for elastic storage that looks like a file system
or database to an application running in EC2—services, such as Elastic Block Store
(EBS). When an instance in EC2 shuts down normally, its data is lost instantly. The
only way to maintain its data after shutdown is through EBS. As you might imagine,
EBS is additional functionality built on top of S3 .

EBS volumes can be from 1 GB to 1 TB in size. After a volume is created, it can be
attached to an Amazon EC2 instance. When it’s attached, it appears as a mounted
device similar to any hard drive or other block device. At that point, the instance can
interact with the volume as it would with a local drive, formatting it with a file system
or installing applications on it directly.

You can attach a volume to only one instance at a time, but many volumes can
be attached to a single instance. This means you can attach multiple volumes and
stripe your data across them for increased I/O and throughput performance. This

is particularly helpful for database-style applications that frequently encounter many
random reads and writes across the data set. If an instance fails or is detached from an
Amazon EBS volume, you can attach the volume to another instance.

5.4.6 Addressing the challenging issue of latency

The delay from request for a chunk of data to its ultimate delivery—latency—is a
big problem when you’re transferring data across a wide area network or the in-
ternet. Local disk subsystems these days typically deliver data with latency of five
milliseconds or less. What about the internet? Pinging 15 of the most popular sites
as listed by Alexa once a second for a period of one minute produced the follow-
ing results:

■ Average latency—72 ms
■ Maximum latency—142 ms
■ Minimum latency—25 ms

An average latency almost 14½ times what even a disk read would be is a high price to pay
to shift something to the cloud, and for some applications this is a show stopper.

The number-one strategy to combat latency is to move the data as close to users
as possible. This is what content-delivery networks such as Akamai have built huge
businesses on. The same concept of content delivery can be employed by cloud
applications to take the data out to the network edge so the content is as close as
possible to consumers of that data. Again, the cloud provider that has the longest lead
over all the others in the market is Amazon . It has a mature enough service to have
already developed a content-delivery capability called CloudFront to help solve the
latency issue.

Content delivered to the edge can largely solve the latency problem for distribution
of files to end users: the output side of the equation. But what about the input side?
For example, what if you run your application in your data center but want to use the
cloud strictly for storage? You probably need to carefully examine your application’s
data-usage patterns with latency for both the input and output sides clearly in mind.
Output destined for end users should be pushed out to the cloud and from there out
to the network edge using content delivery.

When you’re planning for the input side of the data your application needs, make
sure any data streaming in from cloud storage to your application is also as physically
close to your data center servers as possible. This is because every router and switch
between the portion of your application doing compute and where the data resides
adds to the latency. Choose a cloud storage provider that guarantees you geographic
control over your storage and has a facility close to yours.

Now you know why design and architecture issues need to be carefully considered
when you’re moving or building an application for the cloud and expect it to scale in
terms of steadily growing user base, rapidly growing and shrinking user community,
high-demand compute loads, or exponentially growing storage requirements.

Designing for exponentially expanding storage 129

130 CHAPTER 5 Designing and architecting for cloud scale

5.5 Summary
In this chapter, we began to answer the question, “How do you move to the cloud?” We
looked at design and architecture issues germane to both refactored applications be-
ing moved to the cloud and to new applications purpose-built to run in the cloud. The
big design topics covered included using sharding to scale very large applications that
have databases (because databases frequently become the barrier to scaling), using
cloudbursting to keep an application resident in the local data center with overflow
capacity provide by the cloud, and using cloud storage services to scale data-storage
capacity quickly and easily.

In the next chapter, we’ll focus on reliability issues that arise in the cloud when
hundreds or even thousands of servers are employed by an application.

6

131

Achieving high
reliability at cloud scale

This chapter covers
■ SOA as a precursor to the cloud

■ How loose coupling improves reliability

■ Distributed high-performance cloud reliability,
including MapReduce

The cloud is great for dealing with scale because the public Infrastructure as a
Service (IaaS) as well as Platform as a Service (PaaS) clouds are large collections of
thousands of virtualized servers with tools that allow you to expand and contract the
number of instances of your application according to demand. But what happens
when you try to have literally thousands of commodity (cheap) computers all work-
ing in parallel? Well, some of them will fail as they reach the mean-time-to-failure
point. You learned about designing and architecting for scalability in chapter 5. But
in the event that you create a popular application (there’ll be another Google and
Facebook, have no fear), you need to be prepared to deal with those hardware fail-
ures. You need to design and architect those applications for reliability. Reliability is
important for any application, no matter where it resides, if it’s going to be put into
production and in any way become mission critical. But the cloud presents interest-
ing challenges as well as opportunities with respect to application reliability.

132 CHAPTER 6 Achieving high reliability at cloud scale

In the first section, you’ll read about distributed systems, loose coupling, and how
those principles led to Service Oriented Architectures (SOAs), the precursor to the
cloud. Distributed systems have been around for decades, but we’ll focus on the aspects
of this architectural principle most relevant to the cloud. In the second section in this
chapter, you’ll read about a powerful paradigm called MapReduce that’s being used
extensively in the cloud to make highly reliable and highly scalable systems that can
perform rapid tasks on massive amounts of data.

Let’s start learning how to design and architect for application reliability in the
cloud by going back to the advent of SOA and how they’re a direct ancestor of cloud
computing.

6.1 SOA as a precursor to the cloud
Distributed, loosely coupled systems, which formed the basis for SOA, are by now
widely used by virtually every organization with an active web presence. They formed
the direct precursor to cloud computing. This architecture also presents one of the
best approaches to reliable (or at least fault-tolerant) systems. Let’s begin this section
by examining distributed systems and loose coupling before delving into SOA more
deeply and seeing how it has informed reliable cloud computing approaches.

6.1.1 Distributed systems

The most important point about distributed systems, and why they can be more reli-
able than nondistributed systems, is that when properly implemented, they have no
single point of failure . Distributed web architectures typically fall into one of several
basic categories:

■ Client-server architectures are two-tier. Smart client code contacts the server for
data and then formats and displays it to the user. Input at the client is commit-
ted back to the server when it represents a permanent change. The server is
frequently little more than a database.

■ Three-tier architectures add a business-
logic middle tier. Three-tier systems
(see figure 6.1) move the client in-
telligence (also called business logic)
to a middle tier so that stateless cli-
ents can be used. This simplifies
application deployment. Most web
applications are three-tier.

■ N-tier architectures usually refer to
web applications that utilize more
services. N-tier (see figure 6.2) typi-
cally refers to web applications that
further forward their requests to
other enterprise services. This type

Presentation tier

HTML, CSS, JavaScript over HTTP

Data tier

JDBC to SQL

Business tier

Figure 6.1 A three-tier architecture: Presentation
layer + Business layer + Database layer

SOA as a precursor to the cloud 133

of application is the one most responsible
for the success of application server s.

■ Tightly coupled (clustered) architecture s are
a form of parallel processing . This refers
typically to a cluster of machines that
work closely together, running a shared
process in parallel. The task is subdi-
vided in parts made individually by each
one and then put back together to make
the final result.

■ Peer-to-peer is clientless and has no single
point of failure that can cause total fail-
ure. This type of architecture has no
special machine or machines that pro-
vide a service or manage the network re-
sources. Instead, all responsibilities are
uniformly divided among all machines,
known as peers. Peers can serve both as
clients and servers.

This book focuses on the multitier architec-
ture s (three-tier and N-tier) because they ap-
ply best to the web and to the cloud. This is
because the browser is the definition of a thin
client presentation layer where the work has to
be done on an application server on its behalf.
A SOA falls into the same category. The next
section will drill down into the SOA style of distributed application.

6.1.2 Loose coupling

In computer science, coupling refers to the degree of direct knowledge that one com-
ponent has of another. It’s the degree to which components depend on one another.
What does this have to do with reliability or the cloud? Loose coupling affects reli-
ability because each component that operates somewhat independently from all other
objects can be built, tested, and replaced separately from all other objects. It’s easier
to build the other components such that they can handle when this component fails,
either by failing gracefully themselves or by accessing another instance of this com-
ponent running somewhere else. Earlier, you learned about humans interacting with
websites through a browser, and one machine at one site interacting with another
machine at another site. Loose coupling is the only application architecture that can
provide reliable web applications, because one site never knows when another may be
out, slow, or have made an unannounced change in its interface.

Figure 6.2 An N-tier architecture. Many
variations are possible. But generally,
an application server is involved. From the
application server, many different
logical layers can be accessed. At the
application server level, you can begin
to interact with the cloud. Any or all of
these layers can operate in the
cloud effectively.

CSS HTML

Frameworks API Web services

Web server

Application server

Database File servers Communication

Data services

Integration services

JDBC Service gateways

134 CHAPTER 6 Achieving high reliability at cloud scale

As some have pointed out, the ultimate way to make two components loosely coupled
is to not connect them at all; short of that, make sure the communications between
components don’t depend on internals of the component
and only access an abstract interface layer.

At the class level, strong coupling occurs when a
dependent class contains a pointer directly to a concrete
class that provides the required behavior. This is shown
abstractly in figure 6.3. Loose coupling occurs when the
dependent class contains a pointer only to an interface,
which can then be implemented by one or many concrete
classes. Loose coupling provides extensibility to designs
(see figure 6.4). You can later add a new concrete class
that implements the same interface without ever having
to modify and recompile the dependent class. Strong
coupling doesn’t allow this.

Tight coupling leads to a situation where a change
in one module forces a ripple effect of changes in
other modules. Further, assembly of modules requires
more effort and time due to the increased intermodule
dependencies . One module may be harder to reuse
because dependent modules must be included with it.
Loosely coupled systems benefit from the negation of each of these characteristics.

Tight versus loose coupling is an important concept for application reliability,
SOAs, and ultimately reliable cloud applications. Table 6.1 lists a series of important
characteristics of applications that can be measured against an application tightly

Figure 6.3 Strong coupling. Changes
in A impact B, C, and D. Changes in B
impact A, C, and D.

Strong Coupling

A B

DC

Loose Coupling

A

B C

D

Figure 6.4 Loose coupling.
Modifications in A’s behavior
don’t impact B, C, or D.
Modifications in B’s behavior
may affect A but nothing else.

Table 6.1 Critical application attributes in tightly vs. loosely coupled architectures

Tightly coupled Loosely coupled

Technology mix Homogeneous Heterogeneous

Data typing Dependent Independent

Interface model API Service

Interaction style RPC Document

Synchronization Synchronous Asynchronous

Granularity Object Message

Syntactic definition By convention Self-describing

Semantic adaptation By recoding Via transformation

Bindings Fixed and early Delayed

Software objective Reusability Broad applicability

Consequences Anticipated Unintended

versus loosely coupled. This table is based on ideas originally expressed by Doug Kaye
on his blog called Loosely Coupled (www.looselycoupled.com/blog/).

You can use a list of techniques to help create and maintain loose coupling in your
application components. To achieve the desired loose coupling, use the following:

■ Vendor- and platform-independent messages
■ Stateless messaging where possible and appropriate
■ Coarse-grained, self-describing, and self-contained messages
■ Constrained, well-defined, extensible, and versionable interfaces
■ Human-readable strings (URIs) for service and instance addresses
■

Asynchronous exchange patterns where possible and appropriate
Humans controlling clients where possible and appropriate

■

Web applications followed many of the attributes of loose coupling. When we moved
toward machine-to-machine communication over the web, we retained the loose cou-
pling and created the concept of SOA. Here, a remote service publishes its interface
(via a WSDL), and a consuming service has to abide by that interface to consume the
service. SOA was an important evolutionary step to get to the cloud. Let’s look much
more closely at how SOA works.

6.1.3 SOA

Computing has several different definitions of SOA. SOA is an attempt to provide a set
of principles or governing concepts used during the phases of systems development
and integration. It attempts to package functionality as interoperable services in the
context of the various business domains that use it. Several departments in a company
or different organizations may integrate or use such services—software modules pro-
vided as a service—even if their respective client systems are substantially different.

SOA as a precursor to the cloud 135

http://www.looselycoupled.com/blog/

136 CHAPTER 6 Achieving high reliability at cloud scale

SOA is an attempt to develop yet another means for software module integration
toward a distributed application . Rather than defining an API, SOA defines the
interface in terms of protocols and functionality. An endpoint is the entry point for
such an SOA implementation.

SOA A flexible set of design principles used during the phases of systems
development and integration. A deployed SOA-based architecture provides a
loosely coupled suite of services that can be used in multiple business domains.
SOA separates functions into distinct units, or services , which developers make
accessible over a network (usually the internet) in order to allow users to
combine and reuse them in the production of applications. These services,
and their corresponding consumers, communicate with each other by passing
data in a well-defined, shared format (usually XML), or by coordinating an
activity between two or more services.

SOA is about breaking an architecture down to its functional primitives, understand-
ing its information and behaviors, and building it up again using service interfaces
abstracted into a configuration layer to create business solutions. SOA naturally fits the
definition of loose coupling because it treats services as black boxes of functionality
with a simple internet standards-based interface between these service components.

6.1.4 SOA and loose coupling

SOA in its simplest form was aimed at allowing one computer to access a capability across
the internet on another computer that previously might have been accessed by a hu-
man through a browser. For example, an early web service allowed a site selling domain
names to also start selling digital certificates, where the authentication of the certificate
buyer was performed at a third-party site. (Previously, you would have gone to that third-
party site and, using the browser, followed the authentication process, thus breaking the
stickiness of the original vendor—which lost a buyer in the middle of a transaction.)

SOA enabled a form of aggregation where a web application could be constructed
out of services, some of which were yours and some of which were delivered by
others. In this way, SOA aims to allow users to string together fairly large chunks
of functionality to form ad hoc applications built almost entirely from existing
software services. The larger the chunks, the fewer the interface points required to
implement any given set of functionality. But large chunks of functionality may not
prove sufficiently granular for easy reuse. Each interface brings with it some amount
of processing overhead. You must consider performance in choosing the granularity
of services. The great promise of SOA suggests that the marginal cost of creating
the nth application is low, because all the software required already exists to satisfy
the requirements of other applications. Ideally, you require only orchestration to
produce a new application.

For this to work well, no interactions must exist between the chunks specified or
within the chunks themselves. Instead, you have to specify the interaction of service s (all

of them unassociated peers) in a relatively ad hoc way with the intent driven by newly
emergent requirements. This is why services must be much larger units of functionality
than traditional functions or classes, lest the sheer complexity of thousands of such
granular objects overwhelm the application designer. Programmers develop the
service s themselves using traditional languages such as Java, C, and C++.

SOA services feature loose coupling, in contrast to the functions that a linker binds
together to form an executable to a dynamically linked library, or to an assembly. SOA
services also run in safe wrappers (such as Java or .NET) and in other programming
languages that manage memory allocation and reclamation, allow ad hoc and late
binding, and provide some degree of indeterminate data typing.

6.1.5 SOA and web services

Web services can implement a SOA. Web services make functional building blocks ac-
cessible over standard internet protocols (such as HTTP) independent of platforms
and programming languages. These services can represent either new applications or
wrappers around existing legacy systems to make them network-enabled.

Each SOA building block can play one or both of two roles: service provider or
service consumer.

SERVICE PROVIDER

A service provider creates a web service and possibly publishes its interface and access
information to a service registry. Each provider must decide which services to expose,
how to make trade-offs between security and easy availability, and how to price the
services or (if no charges apply) exploit them for other value. The provider also has to
decide what category the service should be listed in for a given broker service and what
sort of trading partner agreements are required to use the service. It registers what
services are available within it and lists all the potential service recipients.

The implementer of the broker then decides the scope of the broker. You can find
public brokers through the internet, whereas private brokers are only accessible to a
limited audience—for example, users of a company intranet. Furthermore, you must
decide on the amount of offered information. Some brokers specialize in many listings.
Others offer high levels of trust in the listed services. Some cover a broad landscape
of services, and others focus within an industry. Some brokers catalog other brokers.
Depending on the business model, brokers can attempt to maximize look-up requests,
number of listings, or accuracy of the listings.

The Universal Description Discovery and Integration (UDDI) specification defines
a way to publish and discover information about web services. Other service broker
technologies include (for example) Electronic Business using eXtensible Markup
Language (ebXML) .

SERVICE CONSUMER

The service consumer or web service client locates entries in the broker registry using
various find operations and then binds to the service provider in order to invoke one
of its web services. Whichever service the service consumers need, they have to take it

SOA as a precursor to the cloud 137

138 CHAPTER 6 Achieving high reliability at cloud scale

into the brokers, bind it with respective service, and then use it. They can access mul-
tiple services if the service provides multiple services.

Note that Amazon’s cloud services are called Amazon Web Services, and Amazon is a
web service provider in the way described here.

6.1.6 SOA and cloud computing

SOA and cloud computing can be paired to gain the benefits both of service deploy-
ments and of the scale and economics of the cloud. With cloud computing, enterprises
can access services hosted on third-party servers over the internet. With SOA, enter-
prises use integrated application services in a more lightweight fashion than tradi-
tional application platforms.

Because cloud computing is a way of creating a system in which some or all of its
IT resources exist within a third-party cloud computing resource, such as Amazon EC2
or Force.com, cloud computing can involve part or all of an architecture. The core
difference is that the system is extended to resources that you don’t own or host locally.

Putting this more simplistically, SOA is all about the process of defining an IT solution
or architecture, whereas cloud computing is an architectural alternative. We can say
that SOA can’t be replaced by cloud computing. Most cloud computing solutions are
defined through SOA. They don’t compete—they’re complementary notions.

Adopting SOA can prepare an enterprise for cloud computing by showing what
challenges the organization faces internally in supporting service components—
challenges that using cloud services will exacerbate. The service orientation in SOA
and the cloud make for similarities, such as both concepts requiring a governance
layer and a strong understanding of processes.

Both the cloud and SOA determine what some of the major reusable components
are and what the right technologies to run large-scale components over open networks
are. An organization that has moved toward SOA in a modular fashion is in a better
position to move modules to the cloud.

Further, the cloud serves as a good way to deploy services in an SOA environment.
SOA and the cloud support each other but aren’t based on the same ideas. Cloud
computing is a deployment architecture , not an architectural approach for how to
architect your enterprise IT, whereas SOA is.

Components that reside on different computers (some or all of which are in the
cloud) and must communicate over the network—potentially over the public internet—
require communication between those components (or processes). It’s important that
your understanding of interprocess communication is current. The next section delves
into a typical type of interprocess communication used in the cloud.

6.1.7 Cloud-based interprocess communication

Amazon Simple Queue Service (SQS) is a way of sending messages between applica-
tions (components in a distributed application) via web services over the internet. The
intent of SQS is to provide a highly scalable and hosted message queue .

SQS works in a complementary fashion with EC2. (See figure 6.5.) It’s a highly reli-
able, scalable message queuing service that enables asynchronous message -based com-
munication between distributed components of an application. Those components
are typically EC2 instances. You can send any number of messages to an Amazon SQS
queue at any time from any component. The messages can be retrieved from the same
component or a different one right away or at a later time. No message is ever lost
in the interim; each message is persistent ly stored in highly available, highly reliable
queues. Multiple processes can read, write from, and write to an Amazon SQS queue
at the same time without interfering with each other.

Now that you’ve delved into loose coupling, its incarnation in distributed applications,
and the way in which those distributed application components may communicate
across the internet, let’s look at a framework called MapReduce that handles much of
this infrastructure for you and yet allows scaling to a massive level, all the while giving
you a simple way to maintain high reliability.

6.2 Distributed high-performance cloud reliability
In all engineering disciplines, reliability is the ability of a system to perform its required
functions under stated conditions for a specified period of time. In software, for appli-
cation reliability, this becomes the ability of a software application and all the compo-
nents it depends on (operating system, hypervisor, servers, disks, network connections,
power supplies, and so on) to execute without faults or halts all the way to completion.
But completion is defined by the application designer. Even with perfectly written soft-
ware and no detected bugs in all underlying software systems, applications that begin
to use thousands of servers will run into the mean-time-to-failure in some piece of
hardware, and some number of those instances will fail. Therefore, the application
depending on those instances will also fail.

The cloud, with its tendency to use commodity hardware and virtualization, and with
the potential for enormous scale, presents many additional challenges to designing
reliable applications.

Application 1 Application 2

Amazon SQS Queue

Computer A
or EC2 Instance A

Computer B
or EC2 Instance B

Figure 6.5 The simple structure of Amazon’s SQS interprocess communication web service

Distributed high-performance cloud reliability 139

140 CHAPTER 6 Achieving high reliability at cloud scale

6.2.1 Redundancy

In addition to the standard set of things to consider when designing a reliable appli-
cation, building in redundancy is the most important additional factor for the cloud.
Many design techniques for achieving high reliability depend upon redundant soft-
ware, data, and hardware. For example, NASA for decades has built systems called triple
modular redundancy with spares , which means that three copies of a critical system are
live and producing answers that run through a voter who produces the final answer. If
one or more of the live systems fails, a spare can be powered up and brought online.
Such redundancy helps ensure recovery from detected failure conditions. These tech-
niques are expensive and complex but can be less so in the cloud because some of the
hard stuff is provided by the cloud vendors.

For redundant software components, this may consist of double- or triple-redundant
software components (portions of your application) running in parallel with common
validation checks. One idea is to have the components developed by different teams
based on the same specifications. This approach costs more, but extreme reliability
may require it. Because each component is designed to perform the same function,
the failures of concurrent identical components are easily discovered and corrected
during quality-assurance testing. You should be cautious, because it’s possible for
separate developer teams to make the same error in reading the specification. Such
common-cause errors are infrequent but do happen.

Although redundant software components provide the quality-assurance process
with a clever way to validate service accuracy, certain applications may want to deploy
component redundancy into the production environment. Such runtime component
redundancy may be useful for situations where the runtime environment is hazardous
and can’t be strictly controlled (such as the space shuttle). In such hazardous conditions,
multiple parallel application processes can provide validity checks on each other and
let the majority rule. Although it’s true that redundant software components cause
extra resource consumption, the tradeoff between reliability and the cost of extra
hardware may be worth it.

Another redundancy-based design technique is the use of services such as clustering
(linking many computers together to act as a single faster computer), load-balancing
(workloads kept balanced between multiple computers), data replication (making
multiple identical copies of data to be processed independently and in parallel), and
protecting complex operations with transactions to ensure process integrity. There is a
lot less complexity when you use a cloud provider because it has in-built infrastructure
that does this for you.

Redundant hardware is one of the most popular strategies for providing reliable
systems. This includes redundant arrays of independent disks (RAID) for data storage,
redundant network interfaces, and redundant power supplies. With this kind of
hardware infrastructure, individual component failures can occur without affecting
the overall reliability of the application. It’s important to use standardized commodity
hardware to allow easy installation and replacement.

6.2.2 MapReduce

MapReduce is a software framework invented by Google to solve the massive search
problem it has across all content on the web, which, by the end of 2008, exceeded one
trillion unique URLs. MapReduce is loosely coupled distributed computing on a mas-
sive scale, working on large data sets operated on by clusters of commodity (cheap)
computers.

Why commodity computers? Because the numbers got so large that Google had no
choice but to give up on hardware reliability and switch things over to have reliability
provided by the software. The law of large numbers took over; and with hundreds
of thousands of servers, even when each individual server has excellent reliability
statistics, there will still be multiple failures per day as one machine or another reaches
its mean-time-to-failure . The only way to build a reliable system on top of that is to have
the software prepared to deal with those failures.

The name MapReduce has its roots in functional programming, inspired by the map
and reduce functions first called out in the programming language Lisp. 1 In Lisp, a
map takes as input a function and a sequence of values. It then applies the function to
each value in the sequence. A reduce combines all the elements of a sequence using a
binary operation. For example, it may use + to add all the elements in a sequence.

In addition to addressing reliability, this is parallel programming potentially on a
massive scale, achieving huge performance gains. This is as important as reliability
because given problems with data sets as large as the web, not doing the job with
massive parallelism may mean the job won’t get done.

THE PROBLEM MAPREDUCE SOLVES

MapReduce achieves reliability by parceling out operations on the data set to each
node in a network. Each node reports back periodically with results and status updates.
Obviously, a failed node remains silent. That node’s master notes the dead worker
node and sends its work out again. You can see the roles of master and worker illus-
trated in figure 6.6.

The master does the following:

1 Initializes the array and splits it into tasks according to the number of available
workers

2 Sends each worker its subarray task
3 Receives the result from each worker

The worker does the following:

1 Receives the subarray task from the master
2 Performs processing on the subarray task
3 Returns the result to the master

Distributed high-performance cloud reliability 141

1 Harold Abelson , Gerald Jay Sussman, and Julie Sussman , Structure and Interpretation of Computer Programs , 2nd
edition (MIT Press, 1996).

142 CHAPTER 6 Achieving high reliability at cloud scale

THE MAP STEP

Map, written by a user of the MapReduce library, takes an input pair and produces a
set of intermediate key/value pairs. The MapReduce library groups together all inter-
mediate values associated with the same intermediate key I (an arbitrary user-defined
handle to organize intermediate results) and passes them to the reduce function.

A master node takes the input, chops it up into smaller subproblems, and distributes
those subproblems to worker nodes.

Worker nodes may repeat the process as many levels as needed until they get the
desired problem size. A worker node receiving appropriately sized problem processes
the work and passes the result back to its parent node. Figure 6.7 shows the map function
in the context of the entire MapReduce model.

Now, let’s look at the reduce part.

THE REDUCE STEP

The reduce function, also written by the user, accepts an intermediate key I and a set
of values for that key. It merges together these values to form a possibly smaller set of
values. The master node takes the answers to all subproblems it spawned and combines
them appropriately to produce an answer—the answer to the problem it was handed
in the first place.

worker

worker
worker

worker
worker

write

write

write

write

write

TaskResult

write
write

write

take

take
take

take

take

take

take

take

MASTER

Result

Result

Result

Task

Task Task

Figure 6.6 The roles of master and worker are depicted using the little
elephant logo of the open source Hadoop implementation of MapReduce.
The master divides the problem into tasks and assigns them to workers.
Each worker performs its task and writes back a result that the master
gathers into an overall result.

Output
Data

Reduce
instance

Map
instance 1

Input
part 1

MapReduce

Input
part N

Map
instance N

Input
Data

Figure 6.7 The map and reduce functions in a MapReduce model. The input data is partitioned into
subparts, each of which is handed to a map function. It passes the output of all the map functions to a
reduce function that prepares the final output.

Consider the problem of counting the number of occurrences of each word in a
large collection of documents. The following shows the MapReduce code for such a
problem:

void map(String name, String document):
 for each word w in document:
 EmitIntermediate(w, 1);

 void reduce(String word, Iterator partialCounts):
 int result = 0;
 for each pc in partialCounts:
 result += ParseInt(pc);
 Emit(result);

On the first line, name is the document name and document is the document contents.
Then, for the reduce function, word is a word, and partialCounts is a list of aggre-
gated partial counts.

The map function emits each word plus an associated count of occurrences (1,
in this example). The reduce function sums together all the counts emitted for a
particular word.

HOW MAPREDUCE WORKS

MapReduce implementations are sophisticated frameworks for reliable parallel pro-
cessing in a highly distributed fashion. They specifically allow distributed processing
of the map and reduce functions. Provided all map functions are independent of each
other, all maps can be done in parallel. The key is any dependencies in the data set.
There may in practice be limitations caused by the data source and/or number of
CPUs near that data. The set of reducers operating on the same key produced by the
map operations can perform the reduction phase in parallel as well.

Distributed high-performance cloud reliability 143

144 CHAPTER 6 Achieving high reliability at cloud scale

At first glace, MapReduce may appear inefficient compared to more streamlined
sequential algorithms. But remember, you can apply MapReduce to gigantic data sets
much larger than any commodity server can handle. For example, a large server farm
can use MapReduce to sort a petabyte (1 million GB) of data in only a few hours. More
important, this massive parallelism allows smooth recovery from failures of servers or
storage devices during processing, because you can reschedule map and reduce work
as long as that step’s data is still available.

Figure 6.8 shows a fairly detailed step-by-step examination of how MapReduce works.
The MapReduce library in the user program first shards the input files into M pieces
of typically 16 MB to 64 MB per piece. It then starts up many copies of the program on
a cluster of machines. MapReduce then operates in the following way:

q One of the copies of the program is special: the master. The rest are workers as-
signed work by the master. M map tasks and R reduce tasks need to be assigned.
The master picks idle workers and assigns each one a map task or a reduce task.

w A worker assigned a map task reads the contents of the corresponding input shard.
It parses key/value pairs out of the input data and passes each pair to the user-
defined map function. The intermediate key/value pairs produced by the map
function are buffered in memory.

e Periodically, the buffered pairs are written to local disk, partitioned into R regions
by the partitioning function. The locations of these buffered pairs on the local
disk are passed back to the master responsible for forwarding these locations to
the reduce workers.

User program

Master

 assign
reduce

 assign
map

 local
write

 remote
read

Input
file 0

Input
file 1

Input
file 2

Input
file 3

Input
file 4

Input
files

Output
files

Map
phase

Reduce
phase

Intermediate files
(on local disks)

Worker

Worker

Worker

read

Worker

Worker

Output
file 0

Output
file R

 write

 fork fork fork

Figure 6.8 How MapReduce operates (see reference numbers in the above diagram)

r When a reduce worker is notified by the master about these locations, it uses
remote procedure calls to read the buffered data from the local disks of the map
workers. When a reduce worker has read all intermediate data, it sorts it by the
intermediate keys such that all occurrences of the same key are grouped together.
If the amount of intermediate data is too large to fit in memory, an external sort
is used.

t The reduce worker iterates over the sorted intermediate data and, for each
unique intermediate key encountered, passes the key and the corresponding set
of intermediate values to the user’s reduce function. The output of the reduce
function is appended to a final output file for this reduce partition.

y When all map tasks and reduce tasks have been completed, the master wakes up
the user program. At this point, the MapReduce call in the user program returns
back to the user code.

After successful completion, you can get the output of the MapReduce execution in
the R output files.

RELIABILITY IN THE EVERYDAY CLOUD

According to published interviews with Google IT managers, in each cluster’s first year,
it’s typical that 1,000 individual machine failures will occur; thousands of hard drive
failures will occur; one power distribution unit will fail, bringing down 500 to 1,000
machines for about 6 hours; 20 racks will fail, each time causing 40 to 80 machines to
vanish from the network; 5 racks will go wonky, with half their network packets missing
in action; and the cluster will have to be rewired once, affecting 5 percent of the ma-
chines at any given moment over a 2-day span. Also, the cluster has about a 50 percent
chance of overheating, taking down most of the servers in less than 5 minutes and tak-
ing 1 to 2 days to recover.

With this kind of scale, reliability has to be built into the software, not the hardware.
As you’ve read, for this reason and to minimize hardware costs, Google opts to go
with bare-bones commodity hardware and not high-end, supposedly bullet-proof
machines.

You can better appreciate MapReduce by looking briefly at the handful of examples
in table 6.2. It’s been effectively employed by the largest web companies on the planet,
such as Google and Yahoo!.

Table 6.2 Examples where MapReduce is used in high-scale production applications

Application How MapReduce is employed

Distributed grep The map function emits a line if it matches a given pattern. The reduce
function is an identity function that copies the supplied intermediate data
to the output.

Reverse web-link graph The map function outputs <target, source> pairs for each link to
a target URL found in a page named source. The reduce function
concatenates the list of all source URLs associated with a given target
URL and emits the pair <target, list(source)>.

Distributed high-performance cloud reliability 145

146 CHAPTER 6 Achieving high reliability at cloud scale

Table 6.2 Examples where MapReduce is used in high-scale production applications (continued)

Application How MapReduce is employed

Term-vector per host A term vector summarizes the most important words that occur in a
document or a set of documents as a list of <word, frequency>
pairs. The map function emits a <hostname, term vector> pair
for each input document (where the hostname is extracted from the URL
of the document). It passes the reduce function all per-document term
vectors for a given host. It adds together these term vectors, throwing
away infrequent terms, and then emits a final <hostname, term
vector> pair.

Inverted index The map function parses each document and emits a sequence of
<word, document ID> pairs. The reduce function accepts all
pairs for a given word, sorts the corresponding document IDs, and emits
a <word, list(document ID)> pair. The set of all output pairs
forms a simple inverted index. It’s easy to augment this computation to
keep track of word positions.

6.2.3 Hadoop : the open source MapReduce

Fortunately, MapReduce hasn’t stayed locked inside the proprietary domain of Google.
Hadoop has been created as an Apache open source project to provide the rest of the
world with the benefits of MapReduce. One of its major subprojects is its implementa-
tion of MapReduce, which is heavily used by many groups:

■ Amazon —A9 product search, and also Elastic MapReduce as part of Amazon Web
Services (tied to Elastic Compute Cloud)

■ Adobe —Social services
■ Baidu —Leading Chinese language search engine
■ Facebook —4,800 CPU cluster used to store copies of internal log and dimension

data sources
■ Hulu —Log storage and analysis
■ IBM —Blue Cloud, which is based on Hadoop
■ NetSeer —1,000 EC2 instances running Hadoop for crawling, processing, servers,

and log analysis
■ New York Times —Large-scale image conversions run on EC2
■ Rackspace —30-node cluster that parses and indexes logs from the email hosting

system
■ Yahoo! —Over 100,000 CPUs on more than 25,000 servers running Hadoop

A high-quality open source community has grown up around Hadoop. With the caliber
of its various production deployments, it will remain robust and healthy going forward.
The Manning book Hadoop in Action by Chuck Lam delves deeply into MapReduce
as implemented in the open-source community, with lots of practical programming
examples.

6.3 Summary
Designing and architecting for handling the potentially massive scale of users access-
ing your cloud-based application is important. Equally vital is preparing for keeping
such an application and the massive number of servers (or instances) it may require up
and running, with no failures affecting its users. In this chapter, we’ve done a quick re-
view of the relevant reliability concepts when thinking about cloud applications, lead-
ing up to a detailed discussion of MapReduce, one of the most successful frameworks
for reliability even on Google’s massive scale. You now have the knowledge and tools
necessary to plan for handling large numbers of users as well as handle the failures
that will naturally occur given a large numbers of servers, providing for those users in
a smooth and tractable way.

The next chapter builds on chapters 5 and 6 by getting into the practical issues of
how to build, test, deploy, and operate an application in the cloud.

 Summary 147

7

148

Testing, deployment, and
operations in the cloud

Contributed by Patrick Lightbody †

This chapter covers
■ How the typical software deployment model is

improved by the cloud

■ Using the cloud to improve development, testing,
and operations

Using parallelization for testing in all forms■

The process of testing software is, and likely always will be, inherently a spiky activity.
Companies aren’t always testing. Even in software groups that employ the most rig-
orous agile methodologies, it’s unlikely that automated tests are running 24x7—if
only because the humans who trigger those tests by making software changes aren’t
working around the clock. For this reason, testing is quickly becoming one of the
killer apps for cloud computing.

† Patrick is the founder of BrowserMob , a cloud-based website monitoring and load testing service
provider. He is also the founder of OpenQA and a core contributor to Selenium , a popular open-source
browser-testing framework. You can learn more about Patrick and his company at http://browsermob.
com or by emailing him at patrick@browsermob.com.

http://browsermob
mailto:patrick@browsermob.com

Typical software deployments 149

In this chapter, we’ll explore deployment models that are optimized for the cloud, and
how clouds can have a drastic impact on how teams manage operations and testing. We’ll
also look at the various elements of testing that can be accelerated using the cloud.

To help you fully appreciate the sea change that cloud computing brings to testing
and operations, we’ll also spend some time looking at how people approach testing
without the cloud. This includes how companies traditionally buy hardware for new
projects, who is responsible for provisioning the software and hardware, and the typical
breakdown between automated and manual testing.

In examining these different aspects of testing, we’ll discuss not only how traditional
Infrastructure as a Service (IaaS) vendors such as Amazon can accelerate automated
testing, but also how new Software as a Service (SaaS) and Platform as a Service (PaaS)
vendors (many of whom are built on Amazon EC2) are offering new services and
cloud-based APIs that can accelerate manual and semi-automated testing. Let’s get
started by investigating some of the typical deployment models for software.

7.1 Typical software deployments
Before we can discuss how the cloud impacts testing, we need to be clear what the
traditional deployment model looks like. For this exercise, let’s use a fairly standard
web-based application built on top of the Linux, Apache, MySQL, PHP (LAMP) stack.
We’ll rely on four well-known deployment environments you probably already use for
most IT projects:

■ Production— The place where your users/customers access the application and
store their data.

■ Staging— A clean environment meant to clone the production environment as
closely as possible and be used as a final sanity check before deployment. You
may do performance testing here in addition to final system testing.

■ Testing— Typically smaller than staging and production, meant to contain test
data and in-progress software that can be periodically checked for errors and re-
gressions. Often utilized for functional testing and some performance testing.

■ Development— Often a developer’s desktop or laptop, this is where most of the
code is written and initial testing and debugging takes place.

Prior to cloud computing, you could purchase these environments as physical ma-
chines or lease them from managed hosting providers, such as Rackspace . In an ideal
world, the production, staging, and testing environments would be identical in terms
of hardware and software configuration. But in the real world, budget constraints of-
ten result in staging and testing being considerably smaller than the production envi-
ronment they aim to emulate.

7.1.1 Traditional deployment architecture

Consider a public-facing web application required to support at least 10,000 users
browsing the site. Up until this point in the project, the web application has only been

150 CHAPTER 7 Testing, deployment, and operations in the cloud

Load
Balancer

Apache Web
Server 1

Apache Web
Server 2

Apache Web
Server 3

Apache Web
Server 4

Network File System
MySQL Database

(Master)

MySQL Database
(Slave 1)

Web Farm

Reads
Writes

Sync

Figure 7.1 A typical production environment, which includes four web servers, a
load-balancer, two database servers, and a networked file server, which hosts
files shared to all four web servers

deployed on the developers’ desktop computers. It’s now time to purchase the hard-
ware for these various environments.

The architect , working with performance engineers , estimates that the bottleneck
will most probably be the web servers and that each web server can sustain up to 2,500
users browsing the site. Therefore, they should purchase four web servers, a load-
balancer, two database servers (one master and one slave), and a networked file server.
You can see the production environment in figure 7.1.

For green field projects, this hardware may be used first for testing, then for staging,
and finally for production. During each phase of development and testing, the servers
are wiped clean and reconfigured, ensuring that the environments don’t carry over
any junk data from previous testing. This only works for version 1 of this product. After
the project is released and work begins on version 2 and beyond, you need separate
staging and/or testing environments, because what is in production must not be
perturbed. Completely separate and distinct environments must be used to test new
versions of the software about to be moved to production.

7.1.2 Defining staging and testing environments

At this point, what the staging and testing environments (if any) look like is dictated by a
variety of factors, including budget, the software architecture, and risk factors, such as how
confident the team is that the master/slave configuration is necessary and sufficient.

Typical software deployments 151

Suppose the engineering and operations teams have decided that they need both load-
balancing and MySQL master/slave replication in the staging environment to be con-
fident in any configuration changes they push to production. They also want staging
to be as similar as possible (within budget) to production. They decide on the deploy-
ment illustrated in figure 7.2.

As you can see, the basic architecture is kept intact: it includes load-balancing and
MySQL data replication. The team has chosen to have fewer web servers, still believing
that the web server is the main bottleneck and that adding
double the web servers should double the number of users
they can handle.

For the testing environment, the team has decided
that neither the load-balancing nor MySQL replication
is critical for the functional testing the QA team will do.
As such, they opt for a simple two-server configuration,
illustrated in figure 7.3.

Note that there is a risk that bugs related to functionality
may be caused by either web server load-balancing or
MySQL data replication. The team has determined that the
cost savings in hardware is worth that risk.

Figure 7.2 A staging environment to match the production environment
in figure 7.1

Load
Balancer

Apache Web
Server 1

Network File System
MySQL Database

(Master)

MySQL Database
(Slave 1)

Apache Web
Server 2

Web Farm

Reads

Writes

Sync

Apache Web
Server 1

MySQL Database
(Master)

Figure 7.3 A simple testing
environment with a single web
server and single database

152 CHAPTER 7 Testing, deployment, and operations in the cloud

7.1.3 Budget calculations

You may ask, what is the final cost? Let’s assume that each server costs $1,500 and the
load-balancers cost $750 each. Each environment’s cost is outlined in table 7.1.

Table 7.1 The capital expenditure budget calculations for the systems
needed to support a production web service including production, staging,
and testing versions of the service

Production $11,250

Web servers: 4 @ $1,500 $6,000

Database servers: 2 @ $1,500 $3,000

File server: 1 @ $1,500 $1,500

Load balancer: 1 @ $750 $750

Staging $8,250

Web servers: 2 @ $1,500 $3,000

Database servers: 2 @ $1,500 $3,000

File server: 1 @ $1,500 $1,500

Load balancer: 1 @ $750 $750

Testing $3,000

Web server: 1 @ $1,500 $1,500

Database server: 1 @ $1,500 $1,500

Total $22,500

The total of all systems is $22,500. And yet half of it is for staging and testing envi-
ronments that are almost certain to spend long periods of time sitting idle. Even the
production hardware isn’t likely to be 100 percent utilized all the time. Let’s explore
how the cloud can not only cut down these costs but even make testing faster and op-
erations better prepared to scale.

7.2 The cloud to the rescue
If you’ve ever worked in a development or operations team, the architecture and pur-
chasing decisions we walked through in section 7.1 are likely familiar. The cloud—or,
more generally, virtualization— is changing how people go through the previous ex-
ercise. Although it certainly saves money, it’s also making businesses more efficient at
testing and more prepared to scale with customer demand. Let’s look at some of the
ways the cloud can help your company.

7.2.1 Improving production operations with the cloud

The most commonly cited reason for moving to cloud computing is its ability to achieve
internet scale. For example, if your hypothetical web application suddenly needed to

scale to 100,000 users (10X growth) because the site was mentioned on Oprah, the tra-
ditional deployment model we went through earlier wouldn’t work. There’s no way to
acquire another 36 web servers and some number of database servers on demand.

Although this scalability argument is one of the best for moving deployments and
operations to public or private clouds, there are many good reasons to consider the
cloud even if your applications will never get surges of traffic such as this.

ELASTIC BANDWIDTH

Whether you’re building your own data center or renting space from an Internet Service
Provider (ISP), you have to pay for bandwidth. Bandwidth is almost always metered, usu-
ally by a combination of total bytes transferred per month and peak throughput in terms
of megabits per second. If you have your own data center, your data throughput may be
limited by the size and type of network connection coming into your data center, possibly
limiting the speed at which you can deliver content to your users.

Either way, it’s often impossible or at least costly to quickly surge up to extreme
levels of network throughput. Yet in a cloud model, you get the benefit of pooling
resources to have much larger network throughput than you’ll typically ever need but
can tap into on occasion.

For example, I’ve seen my own pool of machines on the Amazon EC2 network,
capable of collectively transferring more than 3 GBps. That’s the equivalent of
downloading a full, uncompressed CD in less than 2 seconds, or a complete Blu-ray
movie in about a minute.

Even if the number of machines you need can stay completely constant, the cloud’s
massive network infrastructure is a benefit that’s often overlooked. Most network
operations teams can easily spend hundreds of thousands of dollars getting only a fraction
of the performance that large public and private clouds can provide immediately.

ELASTIC DISK STORAGE

A local, redundant, high-speed storage area network (SAN) is often a massive infra-
structure investment. And when you eventually outgrow your original storage space,
increasing the size can be extremely difficult. But in the cloud, your data may be practi-
cally unlimited in terms of scalability.

For example, for any data stored in Amazon S3 , it’s unlikely you’ll ever need to think
about disk space. Amazon’s pricing page talks about 5 PB (5,000,000 GB) as one of its
pricing tiers—and you can go well beyond that if needed. For that, your architecture
must work with S3’s basic capabilities and remote nature. See chapter 5 for more on
architecting for the cloud.

A local SAN will always offer much faster performance than fetching objects in
a remote file store, such as Amazon S3. Consider that it may cost $250,000 or more
just for the initial hardware for a 100 TB SAN, plus hundreds of thousands more in
personnel and electricity costs. You can store that same 100 TB in Amazon S3 for less
than $15,000/month.

Whereas those cost savings are reason enough for people to re-architect their
applications to work with the cloud, there’s another factor to consider. If you ever

The cloud to the rescue 153

154 CHAPTER 7 Testing, deployment, and operations in the cloud

outgrow the maximum capacity of your SAN (that is, the SAN controller’s CPUs or
RAM are fully utilized), the cost of building a new, larger SAN and migrating the data
over can be a massive or even crippling expenditure.

RESPONDING TO BAD HARDWARE

Similar to the growing pains of expanding SANs, another area that network operations
often spends a lot of time on is responding to emergencies when hardware fails. Practi-
cally everything in a server will eventually fail: disks, CPUs, RAM, fans, and so on. How
quickly you can respond can greatly affect customer satisfaction.

In the non-cloud world, if a server suffers a crash from hardware failure, it’s taken
out of rotation, and replacement parts are installed as quickly as possible. This can take
hours, days, or even weeks, depending on where the servers are located and whether
you can readily find replacement parts.

In the cloud world, hardware still goes bad. Although it’s just as rare as with physical
hardware, we’ve seen hundreds of Amazon EC2 instances fail all at the same time,
likely due to hardware problems. The difference is how we responded to the issue.
Because our software was designed for the cloud, all we had to do was click a few
buttons: those machines were replaced with new ones in a different availability region
where there were no hardware issues.

AUTOMATING DEPLOYMENT

Being able to respond to failing servers or instantly provision new ones for scale greatly
depends on the software architecture and whether it allows for truly automated de-
ployment. Although there are many benefits of public and private clouds, you can’t
take advantage of them if you rely heavily on manual processes.

If your team needs to manually bring up a server, install Apache, copy over your
PHP web application, configure the application to point to the MySQL database, and
then finally add the new IP address to the load-balancer for production rotation, you
probably aren’t ready for cloud scale (or, heaven forbid, a mention on Oprah).

But if you can answer “yes” to some or all of the following questions, you may be
cloud-ready:

■ Do you have automated scripts for setting up the operating system and installing
all necessary software?

■ Do you package your software in such a way that all the configuration files are
bundled with the binary artifacts, ready for one-click deployment?

■ Do you run your software stack inside of virtual machines that can be cloned?
■ Are common maintenance tasks (such as vacuuming the database, announcing

maintenance windows, and backing up data) happening automatically or easily
automated with a single click?

■ Is your software designed to scale horizontally by adding new web servers or
other machines?

By putting some time into automation efforts that allow you to answer “yes” to these
questions, you not only prepare yourself to be able to address hardware issues and

dynamically scale using the elasticity of the cloud, but also put yourself in position to
accelerate your development and testing.

7.2.2 Accelerating development and testing

Whereas we’ve been highlighting the merits of the cloud for production operations,
the rest of this chapter will focus on how the cloud changes the software when testing is
done. Before diving into specific types of testing, let’s explore the two primary reasons
you should consider cloud-based testing: cost savings and test acceleration.

COST SAVINGS

Remember that half of the $22,500 of hardware purchase in the earlier hypotheti-
cal testing environment was for testing and staging, both used for a variety of QA
and testing. But that hardware is unlikely to be used 100 percent of the time. Let’s
assume that both environments are needed only 50 percent of the time during
normal business hours. That comes out to approximately 1,000 hours per year of
required usage.

Table 7.2 compares physical hardware utilized 100 percent of the time (24 hours ×
365 days) to that of equivalent cloud-based deployments.

Table 7.2 Comparing staging and testing cloud fees to production hardware costs

Production Staging Testing Staging (Alt) Testing (Alt)

Servers 7 5 2 7 7

Annual hours 8,760 1,000 1,000 250 1,000

Cores/server 8 8 8 8 8

Hardware cost $11,250 - - - -

Annual cloud cost - $4,025 $1,600 $1,406 $5,625

The costs are estimated at approximately 10 cents per CPU per hour, plus a 2.5 cents-
per-hour fee for a load-balancer. These prices reflect the public prices of Amazon’s
EC2 service at the time of publication of this book.

As you can see, when the hardware is used only 1,000 hours per year, the combined
cost of staging and testing is $5,625 per year—much less than the hardware costs of
both smaller environments.

But also consider the alternative deployment layouts represented in the last two
columns of table 7.2. In this situation, you’re re-creating a full production environment
with all seven servers in both environments for not much more. In doing so, you can
also use the staging environment less often, because the testing environment is now
much larger and can be used for performance testing.

Note that to take advantage of these savings you have to be able to quickly
deploy and tear down the environments. That’s where the investments put in by the
operations staff and developers can help out. Often, you can reuse the tools and

The cloud to the rescue 155

156 CHAPTER 7 Testing, deployment, and operations in the cloud

processes used for cloud-based disaster recovery and scalability to save thousands of
dollars each year.

SPEEDING UP TEST AUTOMATION AND MANUAL TESTING

Although the savings in hardware costs are nice, the largest expense for most busi-
nesses is usually employee salaries. As such, anything that can make testers more pro-
ductive is often worth the effort. That’s why as agile software methodologies have taken
hold over the past decade, a major focus on automated testing has been central to the
agile movement.

Whether it’s for load testing, functional testing, or unit testing, the cloud and various
cloud-based tools (commercial and open source) are helping with test automation.
Even for manual testing, various cloud-based services are making individual testers
more productive.

Before we go deeper into how the cloud is speeding up test automation and manual
testing, let’s take a moment to quickly review the various kinds of testing most QA
teams do:

■ Unit testing —Involves using tools such as JUnit or NUnit to build and run auto-
mated tests that exercise the internal algorithms of your software.

■ Functional testing —End-to-end testing of the entire application, from the end
user’s perspective. Also known as acceptance testing .

■ Visual testing —Verifies the user interface on a variety of different platforms. Be-
tween mobile devices, several versions of Windows, and at least five major brows-
ers, this is particularly important for most web applications.

■ Load testing and performance testing —Measures the performance of an application
from when it’s barely being used all the way up to heavy utilization. Also used to
determine the failure point of an application .

■ Usability testing —Collects subjective feedback on how real users react to the ap-
plication’s interface and functionality.

■ Ad hoc and manual testing—A broad bucket of various types of manual testing ef-
forts that can’t or shouldn’t be automated.

■ Penetration testing —Evaluates the security of a computer system or network by
simulating an attack from a malicious source.

Each of these types of testing can benefit from the cloud. Some, such as load testing
and functional testing, benefit through the use of new testing tools designed for the
cloud. Others, such as manual testing, benefit when the application under test (AUT)
can be deployed quickly to the cloud.

For example, suppose two testers need to have exclusive access to the testing
environment at the same time—one plans to run a large load test, and the other
needs to run the entire suite of automated tests. Without the cloud, one would have
to wait for the other to finish. With the cloud, the environment can be cloned, and
both testers can get on with their job without interruption. Let’s explore ways the
cloud allows for tasks to run in parallel, allowing developers and testers to operate
more efficiently.

7.3 The power of parallelization
Whether it’s optimizing the speed at which testers can operate or increasing the per-
formance of a production application, the common theme of cloud computing here
is parallelization. By now, you probably know that in the world of computing perfor-
mance, parallelization is king. Thanks to the work done by companies such as Intel
and AMD , which now ship almost exclusively multicore chips, most consumers enjoy
the same benefits scientists have had for years with supercomputers. Everything from
photo manipulation to super-realistic 3D video games to software-compilation tasks
has been dramatically improved through the use of parallel computing techniques.

And yet when it comes to software development and testing , we’re still remarkably
single-threaded in the way we operate. Whether it’s automated unit tests, which almost
always run in sequence, or the agile-less inefficiencies that organizations unknowingly
employ, such as forcing their test team to wait idle for the next release candidate to be
pushed to the testing environment, the software industry has been surprisingly slow to
use parallelization to improve its own internal processes.

Perhaps it’s because we’re so maniacally dedicated to making our users have
better experiences that we selflessly put off improving our own processes. Clearly the
software industry understands and can take advantage of parallel computing. Ask any
PlayStation or XBox game developer who routinely takes advantage of the multiple
cores in those platforms.

In a way, that’s what’s happening. But usually, the motivation is more about
cost savings and corner cutting than about being customer focused. Convincing
management that you should spend more time building new features is always easier
than arguing for time to speed up your unit tests. Consider figure 7.4, which shows
how you can augment limited internal resources (personnel and hardware alike) with
cloud-based resources, all for the purpose of testing against your test environment.

CPUs have been gaining more cores in recent years; many desktop-class systems
now routinely ship with eight processor cores. There’s an opportunity in the cloud
to make a generational leap in the number of resources you can utilize in parallel.
You no longer have to look within your own organization to try to achieve a 5X or
10X increase in throughput; rather, you can look to the cloud and achieve a 100X or
greater throughput increase.

This isn’t limited to raw CPU resources, either, although that’s a huge area that
benefits testing. You’ll find new growth in cloud-based services that employ real people
to do specialized tasks on demand, paying as you go, following many of the same
principles of cloud computing. Let’s explore the various types of testing and see how
they can be improved by using cloud-based resources in parallel.

7.3.1 Unit testing

Almost every software project has some number of unit tests. The quantity varies
greatly from team to team and project to project, but tools such as JUnit (and their
xUnit equivalents in other programming languages) have become ubiquitous in soft-
ware development projects.

The power of parallelization 157

158 CHAPTER 7 Testing, deployment, and operations in the cloud

Most unit tests require little in terms of complex setup and teardown logic. They’re
often designed to test algorithms and blocks of code that are fairly static. Because there
is little to set up, they often run quickly and demand few resources. As such, many proj-
ects can run hundreds of unit tests in a few minutes.

Unless you’re using the parallelization features of your unit-testing framework
(many of which were only added in the last year or two), you’re likely running all those
tests in sequence. By turning on parallelization in your unit tests, you can use up all
those idle CPU cores and potentially speed up your unit test execution by 5X or 10X.

BEYOND PARALLEL CORES: PARALLEL MACHINES

If your team is writing unit tests, there’s a good chance they’re also using continu-
ous integration (CI). In small teams with only a few projects, CI servers usually aren’t
busy—only a few builds may run every day.

But larger teams and complex projects often quickly overuse CI servers. For
example, one open-source project I contribute to has more than 40 different builds/
projects configured in our CI server, with build times ranging from 30 seconds to over

Figure 7.4 How cloud resources can augment internal resources (personnel and hardware) for
testing. Instead of a small staff being responsible for all manual testing, a crowd-sourcing
scenario is backed up by a potentially vast number of virtual servers in an elastic
compute farm.

Cloud Resources

Elastic Compute Farms

Crowd Sourcing

Cloud
APIs

&
Services

Automated
Testing

Testing
Environment

Manual
Testing

Internal Resources

15 minutes. Because multiple developers usually work on many projects at the same
time, our CI system often has to put some tasks in a queue, waiting for resources to
become available.

About continuous integration
Software packages such as Hudson (open source) and Atlassian Bamboo
(commercial) automatically detect source-code changes and run build and test
scripts to check if anything broke. The result is constant feedback about the
quality of the software project. For CI to work well, it also needs to be installed
on remote servers, because it’s no use if it’s on a developer’s laptop that may be
turned off for the day.

For more information, see http://hudson-ci.org/ and www.atlassian.com/software/
bamboo/. For an in-depth discussion of CI, you may also want to read Continuous
Integration in .NET (Marcin Kawalerowicz and Craig Berntson, Manning).

The solution to an overloaded CI system is to add more build agents. You can install a
build agent on additional servers, and it’s remotely controlled by the CI server to build
and test code on those remote machines. For example, if your CI system is constantly
in a state of backlog with 10 jobs in its queue, you can decrease the queue wait time by
purchasing 10 servers and deploying build agents on each server.

The problem with this approach is that you have to buy 10 servers. Although
hardware isn’t too expensive these days, it’s still wasteful when you think about the
fact that those 10 servers will likely be busy only during normal business hours. For
weekends and the remaining 16 hours of the workday, they will sit idle.

CI servers such as Hudson and Bamboo embrace the cloud in a big way. For example,
Hudson can detect when your internal build farm is too busy and automatically spawn
new machines in the cloud. When the activity dies down, it knows to turn them back
off. Now, instead of waiting 20 minutes for your 1-minute build to get to the front of
the queue to run, it can start immediately.

7.3.2 Functional testing

Compared to unit tests, functional tests are much heavier weight. They rely on the en-
tire software application stack to be running, including database, web server, and web
browser. As such, they take considerably longer to run. A typical unit test may take 1 to
2 seconds to run, whereas a functional test may take 1 to 2 minutes.

You’ve seen how you can make a unit test suite take 1 minute instead of 5 minutes
by using multiple CPU cores. You’ve also seen how the turnaround time on a CI build
for that same unit test suite can be taken from 21 minutes (20 minutes in the queue +
1 minute to build and test) to 1 minute by dynamically scaling up more build agents
in the cloud.

But you have to take a different approach when the test suite itself takes hours.
Spinning up more build agents can keep the CI queue empty, but it doesn’t reduce the

The power of parallelization 159

http://hudson-ci.org/
http://www.atlassian.com/software/

160 CHAPTER 7 Testing, deployment, and operations in the cloud

time it takes for the test results to be reported back. That’s because you’re still running
with one build agent for each individual test run.

Often, these test runs take so long that the developers and QA team decide to run
them only at night or only a few times during the project. The downside is that you
end up catching errors later. Let’s explore ways you can reduce the time it takes for a
functional test suite to complete.

USING SELENIUM FOR FUNCTIONAL TEST AUTOMATION

For this exercise, let’s examine the popular open-source project Selenium, which has
gained wide traction among developers and testers as a simple, low-cost way to write
automated functional tests for web applications. Figure 7.5 shows Selenium IDE, which
can record user interactions and create scripts based on them.

A traditional Selenium test suite first automatically sets up the web application by
deploying the code to a web server, such as Apache, and also sets up a clean database.
Figure 7.6 illustrates how each Selenium test then runs in sequence against the local
test environment.

The problem is that each Selenium test needs to start a fresh browser and walk
through the web application. This not only takes a lot of time (1 minute+), but

Figure 7.5 Selenium IDE after
recording a Google search

it’s also resource heavy (modern web browsers can easily use up a full CPU core
and hundreds of MB of RAM.) Unlike with unit tests, you can’t run dozens of
Selenium tests in parallel on the same machine. If you want to try to tighten the
feedback loop for these important automated functional tests, you have to do
something else.

A SECOND LAYER OF PARALLELIZATION IN THE CLOUD

The solution is to go beyond parallel build agents in the cloud and to introduce a sec-
ond layer of machine parallelization, also in the cloud. Instead of running one Firefox
browser at a time on your build agent, you run dozens in parallel on a browser farm that
you’re hosting in the cloud. With a pool of, say,
20 browsers ready to execute tests in parallel for
each build agent, you can take what was a 3-hour
build down to less than 10 minutes.

The good news is that building a browser farm
is neither hard nor expensive. The open-source
project Selenium Grid uses Amazon EC2 and
makes it easy to talk to one central dispatch (the
Grid server), which then handles allocating a
browser in the farm exclusively for your testing.
Also, several commercial Selenium Grid-like
solutions are available on the market today.
Figure 7.7 illustrates how the Selenium tests now
can run in parallel.

By dramatically decreasing the time it takes to
run your functional tests, you move from running
them once a night to running them continuously
in your CI infrastructure. This means you can learn
about critical user-facing issues within minutes
of code changes, rather than hours or days. This
newfound convenience creates a positive feedback
loop, in which developers and testers alike write
more tests, further benefiting the team and the
project and underscoring the value of automation.

The power of parallelization 161

About Selenium
Selenium is a popular open-source, cross–operating system, cross–programming
language, cross-browser automation framework. Using Selenium, you can drive
Internet Explorer , Firefox , Google Chrome , Safari , and Opera on Windows, OS X, and
Linux, and write your tests in Java , C# , PHP, Python , Ruby , and Perl . Selenium is
a suite of tools and libraries, including a recorder (Selenium IDE), APIs for most
modern programming languages, and a distributed browser farm build for Amazon
EC2 (Selenium Grid). You can learn more at http://seleniumhq.org.

Build Agent

Selenium Test N

Selenium Test …

Selenium Test 2

Selenium Test 1

Apache Web
Server

MySQL
Database

Figure 7.6 A typical Selenium test
suite running on a CI build agent that
includes an Apache web server and a
MySQL database

http://seleniumhq.org

162 CHAPTER 7 Testing, deployment, and operations in the cloud

Similar to CI build agents, these cloud-based machines don’t need to be on all the
time. Your QA team can start and stop them based on demand and cost requirements.
It’s easy for the team to do the cost/benefit analysis of employing a browser farm and
a build-agent farm, allowing them to dynamically change resource allocation based on
business needs.

7.3.3 Load testing

Probably the best example of testing in the cloud is load testing. Load testing is the act
of simulating hundreds, thousands, or even millions of users hitting your site. By doing
this, you can find out if your website can handle the expected load that you may get on
Cyber Monday or after airing a Super Bowl commercial.

The cloud is great for load testing because whereas all QA tasks tend to be spiky in
nature, nothing is spikier than load testing. You may go weeks without running a load
test; and then, as you get close to a release, you may suddenly need dozens or hundreds
of machines to generate enough load to meet your testing goals.

TRADITIONAL LOAD TESTING

The common approach to load testing prior to the cloud involved running commer-
cial or open-source software on your own hardware. Performance testers used tools
such as Apache JMeter and Mercury LoadRunner to create a test script that issued
HTTP requests similar to the traffic a real user caused by browsing the site.

But when it comes time to run a load test, testers need to find enough hardware to
generate the required load. Because load testing doesn’t happen all the time, it’s hard
for businesses to justify the purchase of dedicated hardware for this task. As a general
rule of thumb, a single web server can handle approximately 250 concurrent users,
whereas a single midsized server can generate approximately 1,000 concurrent users
for load. That means you need one load generator for every four web servers.

Build Agent

Selenium Test 2Selenium Test 1

Apache Web
Server

MySQL
Database

Selenium Test N

Selenium Grid

Selenium Test …

Figure 7.7 Selenium tests running in parallel against a single test environment on
a CI build agent

Because this physical hardware is difficult to procure, testers tend to try to push more
simulated users on each load generator. The risk of doing this is that if you overload
the load generator, your results can be skewed or incorrect because the observer (the
load generator) suffers from its own performance problems.

THE ECONOMICS OF CLOUD-BASED LOAD TESTING

Because hardware is often a scarce resource, testers try to make the most out of what
they can get access to, increasing the number of simulated users on each load genera-
tor. But in the cloud, virtual machines are a commodity. That’s why load testing in the
cloud is such an appealing concept.

Several companies have recently rolled out new load-testing services specifically built
for the cloud. Some, such as LoadStorm (http://loadstorm.com), focus on the cost
savings of cloud-based operations and pass those savings on to the end user. Others,
such as SOASTA CloudTest (http://soasta.com), use the massive scale of the cloud to
generate tests for some of the largest websites, such as Intuit ’s TurboTax website and
MySpace .

If you have a large website and want to test what happens when 50,000 visitors hit
it at the same time, you have to find 50 load generators. Getting hold of 50 physical
servers can be extremely difficult and costly in many organizations, but you can do so
in the cloud for less than $5 per hour.

Because it’s so cost effective to generate load from the cloud, you don’t have to be
nearly as aggressive in trying to maximize your load generators. See table 7.3 for hourly
prices of various load-generation configurations.

Table 7.3 Various cloud load-testing configurations, ranging from aggressive to conservative

Aggressive Moderate Conservative

Concurrent users 1,000 1,000 1,000

Users/generator 1,000 250 50

Generators required 1 4 20

Hourly cost < $0.10 < $0.40 < $2.00

As you can see, even when you’re extremely conservative and generate only 50 con-
current users per generator, the cost is trivial. You may want to consider a moderate
or conservative configuration because if you’re too aggressive and get bad test results,
then at a minimum you’ll waste the time of your testers and developers as they analyze
and try to make sense of fundamentally flawed data. Or worse, you may miscalculate
your server capacity, putting yourself at risk of an unexpected crash. When viewed
from that perspective, an extra $2 per hour is a no-brainer.

BROWSER-BASED, CLOUD-BASED LOAD TESTING

A new development in the world of load testing takes this concept one step further.
One of the most time-consuming parts of load testing is the process of creating and

The power of parallelization 163

http://loadstorm.com
http://soasta.com

164 CHAPTER 7 Testing, deployment, and operations in the cloud

maintaining test scripts that simulate your end users. Traditional load testing—even
cloud-based load testing—is still based on the concept of simulating 50, 250, or even
1,000 users from a single computer.

To accomplish this, load-testing tools don’t run a browser. Instead, they play
back only the HTTP traffic that a browser would issue if a real user were to visit a
site. The following listing shows a typical load-test script that simulates a user visiting
Google and searching for “manning publications”.

Listing 7.1 Typical load-test script simulating a user visiting Google

var c = openHttpClient();
c.setBaseUrl('http://google.com/');
c.get('/');
c.get('/logos/olympics10-bg.jpg', 200);
c.get('/logos/olympics10-sskating-hp.png', 200);
c.get('/extern_chrome/c26c79a56c95bda8.js', 200);
c.get('/generate_204', 204);
c.get('/images/nav_logo7.png’, 200);

var search = "manning+publications";
var partial = '';
for (var i = 0; i < search.length; i++) {
 partial += search[i];
 c.get('/complete/search?hl=en&client=hp&q=' + partial);
}

c.get('/csi?v=3&s=webhp&action=&e=23868,23933&...', 204);
c.get('/search?hl=en&source=hp&q=manning+publications&...', 200);
c.get('/csi?v=3&s=web&action=&ei=AWuJS4bmLs7VlAev85DPAQ..., 204);
c.get('/verify/EAAAAH3CAnvqlBhsQW-xnu2kZmE.gif');

The challenge with this approach is that the script must be written to simulate
advanced Ajax functionality. Scripts such as this can take days or weeks to create and
maintain. Today, even the simplest sites, such as www.google.com, contain Ajax func-
tionality. In this case, as users type each key in their search query, a background Ajax
request is made to provide search suggestions (see figure 7.8).

A Google engineer wrote the autocomplete functionality with JavaScript to work
inside a web browser. But because traditional load-testing tools don’t run a browser,
it’s up to the script writer to simulate the autocomplete behavior. Note the for loop
in listing 7.1, which incrementally sends requests to Google’s servers, first with m, then
ma, man, mann, and so on.

But there has been some movement toward using web browsers to generate load,
including a company I founded in 2009 called BrowserMob (http://browsermob.com).
The basic idea behind this approach is that although you can’t run 50 users per CPU
core as you can with traditional load testing, the cost is still small.

For example, suppose you run only one browser per CPU core in the cloud (a
conservative approach). The same 1,000-user test that cost $2 in the old conservative
model now costs $100. Although a 50X jump in cost is quite a lot, relatively speaking,
consider the following code, which is an equivalent script using a real web browser:

http://google.com/
http://www.google.com
http://browsermob.com

selenium.open("http://google.com/");
selenium.typeKeys("q", "manning publications");
selenium.click("btnG");
selenium.waitForTextPresent("books for professionals")

As you can imagine, this script is much simpler to write and maintain. Because it also
uses Selenium, testers can even reuse automated functional tests. Money spent on writ-
ing scripts can now be allocated toward running completely realistic tests. This is the
ultimate promise of the cloud—not merely saving money on infrastructure, but mak-
ing employees more productive, too.

7.3.4 Visual testing

Another area that takes a lot of time is cross-browser visual testing. We’re in the middle
of Browser Wars 2.0, and Microsoft , Google , Mozilla , and Apple show no sign of relent-
ing. In chapter 9, we’ll discuss where the browsers are going. Although the new choices
are great for consumers and have pushed the HTML standards to new heights of
functionality, QA teams are left with more work than ever to ensure that the user inter-
face looks and works well on every platform.

Figure 7.8 Demonstration of Google’s Ajax-based autocomplete functionality

The power of parallelization 165

http://google.com/

166 CHAPTER 7 Testing, deployment, and operations in the cloud

The most common approach to this problem is for QA teams to retain dozens of
physical or virtual machines, each with a different operating system and selection
of browsers. The problem is maintenance: hundreds of combinations of operating
systems, browsers, screen sizes, and versions/releases can influence how a web page
functions and looks. Similar issues exist when you’re trying to test whether emails sent
out by marketing programs or automatically from your software look good on the
dozens of desktop- and web-based email clients.

Fortunately, some commercial services address this issue. Three such companies are
Litmus (http://litmusapp.com), BrowserCam (http://browsercam.com), and Adobe
BrowserLab (http://browserlab.adobe.com). Figure 7.9 shows Litmus displaying
results of how an email looks in 12+ different email clients, including web-based clients
such as Gmail and Yahoo! Mail .

By using these services, you offload the maintenance of these different environments
to a company dedicated to that task. In addition, because these companies share their
resources among all their customers, you end up paying a lot less than if you tried to
virtualize and host each test environment in the cloud by yourself. In a February 2010
case study with Amazon,1 Litmus reported that at times they’re running more than 400
computers in the Amazon EC2 network!

1 http://aws.amazon.com/solutions/case-studies/litmus/

Figure 7.9 Litmus provides cross-browser testing services entirely hosted in the Amazon cloud.

http://litmusapp.com
http://browsercam.com
http://browserlab.adobe.com
http://aws.amazon.com/solutions/case-studies/litmus/

7.3.5 Manual testing

Until now, we’ve only discussed how the elasticity and parallelization of technical in-
frastructure can improve the ways you build software. But you shouldn’t focus only on
nonorganic resources when building software. People are finite resources as well, and
crowd-sourcing networks backed by cloud APIs are a powerful way to augment your
QA process.

Every software project has some sort of QA phase. Unfortunately, prior to the QA
handoff, testers tend to be underutilized. Even worse, after the handoff, they become
over-utilized, resulting in increased stress and potential for missing critical bugs.
Although automated tests can help even out the workload, the reality is that manual
testing will never go away. After all, where do those automated tests originate? From a
QA engineer running a first manual test.

As such, it’s important to think about ways you can take advantage of new services
that let you get access to elastic people . No, not the Mr. Fantastic kind of elasticity, but
rather the kind of people who can be counted on for short, burstable periods of time.
Thanks to the reach of the internet and some innovative new services, you can tap into
people power with relative ease.

Amazon provides a service called Mechanical Turk (https://www.mturk.com/),
shown in Figure 7.10. Amazon calls it “artificial artificial intelligence.”

The service has tens of thousands of human “workers” (also known as Turkers) who
are ready to do arbitrary tasks, written in plain English, for small bounties. For example,

The power of parallelization 167

Figure 7.10 The view a “worker” sees when logging in to Amazon Mechanical Turk

https://www.mturk.com/

168 CHAPTER 7 Testing, deployment, and operations in the cloud

suppose you’ve received reports that your site isn’t accessible from home computers in
Japan. A Turker located in Japan may be able to help confirm that for 5 or 10 cents.

Keep in mind that these Turkers aren’t QA professionals. They aren’t trained in
the world of software testing, and their technical skill level may range greatly from
Turker to Turker. But if your QA team needs help, such as checking hundreds of
pages on your website for visual defects on all the major web browsers, it may be a cost-
effective, elastic solution. Even better, your core QA team gets freed up to focus on
more intellectual tasks, such as automation engineering or better understanding core
product requirements.

Mechanical Turk isn’t the only crowd-sourcing option out there. If you need access
to a more professional staff of manual QA testers, look toward services such as uTest.
They can get you access to thousands of people with QA backgrounds to help with
manual functional testing efforts. With uTest (http://utest.com), you can recruit
dozens or even hundreds of QA professionals to help you with the final testing of a
project without having to pay full salaries for those testers.

Another interesting use of crowd sourcing is for usability testing . In a world where
good design and bad design are often determined in subjective ways, services such
as Mechanical Turk and UserTesting (http://usertesting.com) let you ask dozens of
random people to record their experiences using your software.

This new way to use the power of people lets you, for brief periods, increase your
QA team from 2 people to 20, similar to how you can use the power of elastic machines
to scale up your browser farm or build agents. Those who use these new techniques
effectively find that it opens up new opportunities in how they build their software.

7.4 Summary
Continuous integration was a major shift in the way we build software and receive
near-instant feedback on basic quality metrics such as compilation status and unit-test
success rates. But the new ability to elastically deploy parallel resources (machines or
people) means you can move beyond basic tasks, such as compiling and unit testing.

By being able to continuously run in-depth functional tests and receive results
within minutes, you can quantitatively measure the quality of your entire software stack
in near real time. Similarly, by using crowd sourcing, you can quickly determine the
readiness of a particular software build by receiving qualitative/subjective results and
doing testing that isn’t possible with automation.

By using both the cloud and the crowd, you get close to a model of continuous
deployment . In this model, the time between changes to the software by developers and
end-to-end QA shrinks to the point that it isn’t unreasonable to push new releases every
day while maintaining complete confidence in the quality of the release. Although it
may take some effort to reach this holy grail, we hope you’re encouraged to begin
exploring these new technologies and services and use them to make incremental
improvements to the way your team builds and tests software.

Now, let’s move on to the next chapter, where we’ll discuss the practicalities of
putting cloud applications into production.

http://utest.com
http://usertesting.com

8

169

Practical considerations

This chapter covers
■ Choosing a cloud provider

■

Measuring cloud operations

Public cloud providers and SLAs

■

It’s been one week since you launched the new corporate collaborative portal on
the cloud to great fanfare. You’re still basking in the accolades of your colleagues
as you log in to the application to see the CTO’s latest blog posting on the wonders
of cloud computing, only to find out that your new site is unreachable. It must be a
glitch, you think, trying again. Same result. Frantically, you try other sites within the
intranet. You can reach the cafeteria menu application without any problem. Next,
you try reaching other sites on the internet, such as yahoo.com—again, success.
You try your portal once more. Still unavailable. You’re starting to get that sinking
feeling, as you imagine going from hero to goat in the short span of a week. But
it’s your lucky day. The gods of IT look down mercifully on you, and lo and behold,
10 minutes later the portal is back online. What happened, and how did the
situation resolve itself ?

Applications running in your corporate data center are typically monitored and
managed using network management-systems software. How can you gain similar
insight into the operation of an application running in the cloud?

170 CHAPTER 8 Practical considerations

Running applications in the cloud is different from running an application in
your data center in the level of control you have over the resources that make up the
application. You need a good level of visibility to understand how a cloud application
is operating and to fix and find problems when they occur. The last three chapters
looked at topics related to applications in the cloud. Specifically, in chapters 5 and
6, you read about the design and architecture related to scalability and reliability of
cloud applications. You continued through to the development and testing of cloud
applications in chapter 7. Now, armed with an understanding of how to design, build,
test, and deploy applications for the cloud, let’s shift our focus to the practicalities of
putting cloud applications into production.

In this chapter, we’ll look at the business considerations important in choosing a
cloud provider by examining the key criteria for evaluating various vendor offerings.
We’ll also look more closely at the technical operational issues most important for
cloud applications. Finally, you’ll be able to measure how a cloud application is doing
and how well the cloud vendor is living up to their end of the bargain.

8.1 Choosing a cloud vendor
Choosing a cloud vendor is a momentous decision. Let’s explore the two most critical
aspects of making that decision: the business considerations and the technical opera-
tional considerations.

8.1.1 Business considerations

When choosing a public cloud provider, you’re often able to purchase services in an
on-demand fashion. The advantage of this sort of arrangement is the ability to stop
using it at any time. You can experiment with the services at little cost, and if the qual-
ity and reliability of the service leaves something to be desired, you can choose to go
elsewhere. If you’re running an application requiring significant investment that has
high business criticality , or if you’re considering an annual contract to lower costs, it
probably makes sense to proceed cautiously. In this case, the selection and evaluation
of a potential cloud provider bears some similarity to how you choose a traditionally
outsourced service, such as web hosting or collocation.

The questions you should research and ask regarding the basic facts about a business
providing cloud services should be along the lines of the questions you ask any outside
vendor:

■ Financial viability :
How long has the vendor been around?
 Are they financially stable? Is it a public company or a well-financed privately
held company?
Is it profitable?

■ Operational viability
 Does it have the requisite core assets, such as multiple data centers, and is it

reasonably located?

Choosing a cloud vendor 171

 Can it provide references of satisfied customers?
 Does it have an operating history as a service provider?

■ Contractual viability
 Are its operations audited and in compliance with best practices for service-

based operations (SAS 70 Type II)?
 What are its SLAs, and how are they enforced?

SAS 70 Type II Compliance
SAS 70 is an acronym for Statement of Auditing Standards, developed by the
American Institute of Certified Public Accountants . Being SAS 70 Type II compliant
means that a service organization has the appropriate infrastructure and controls in
place to handle and process its customer’s data in a satisfactory manner. SAS Type
II certification is a costly process and represents a significant investment by a cloud
provider. It involves a six-month data-collection process followed by a lengthy and
comprehensive audit; it concludes with a detailed report produced by an independent
accounting firm.

At a minimum, before entrusting a cloud provider with your business-critical applica-
tions, you should be comfortable that it is in a strong financial position and has a good
operational track record and good operational assets, such as appropriate data-center
facilities and network connectivity. When business issues have been satisfactorily ad-
dressed, the next step is to evaluate the technical considerations germane to cloud
operations, which we’ll talk about next.

8.1.2 Technical operational considerations

Many of the issues often cited as barriers to general cloud adoption end up being issues
that you need to deal with when managing a deployed cloud application. In this sec-
tion, we’ll look at the main technical operational issues you’ll encounter when you put
your business in the cloud. Let’s start with a discussion of availability and performance,
which are traditionally the bread and butter of operational management. Next, we’ll
discuss elasticity and scale, operational security and compliance, and, finally, issues
around interoperability and platform compatibility.

AVAILABILITY AND PERFORMANCE

Most people who work in the IT industry, or who are responsible for running IT
operations, have an intuitive feel for what availability and performance mean. The
simplest definitions are as follows:

■ Availability—Whether an application performs its design function
■ Performance—How fast or slow the application is

To proceed further, let’s be more specific and provide precise definitions of these
terms. Let’s start with availability.

172 CHAPTER 8 Practical considerations

In the context of applications, whether delivered via the cloud or not, it’s important
to measure the availability as experienced by the intended user of the application—was
the end user able to get what they came for? Most applications perform several business
functions or services, and you can measure the availability of each. For any specific
application, the starting point is to determine what the important business processes or
services are and measure the availability associated with them. For example, consider
an e-commerce site that sells books. A myriad of business services constitute such a site,
but four are the primary ones important for generating revenue:

■ Search—Find a book.
■ Browse—Look at the description of a book.
■ Shopping cart—Select a book for purchase.
■ Purchase—Buy the book.

To measure the availability of the e-commerce site, you need to determine whether each
of these business services works properly when you try to use it. You can attempt to mea-
sure these services independently and assign an availability measure to each. Alternatively,
you could define a composite business service that looked at the total availability as being
able to perform each of these business services. The product of the individual availability
measures would be the result for each business service measured independently.

One way to define availability is as the number of successful uses of the application
divided by the number of attempts to use the application:

Availability =
(Total # of successes)

(Total # of attempts)

Although technically correct, this definition has some drawbacks. In practice, it’s gen-
erally straightforward to measure the number of successes in using an application by
looking, for example, at log files or other records of activity. The number of tries is
less straightforward to measure. Whereas you can measure the number of errors that
caused an availability issue when the application is more or less running properly, in
the event that the system is down, you have no way of knowing how many users tried to
use the application when it wasn’t available.

The traditional way of defining availability looks at what percent of the time a given
application or service is able to service users successfully over a given duration. We can
sum up the definition of availability in the following equation:

Availability =
(Total time the service is usable)

(Total duration of measurement period)

The availability of a system is often measured in 9s , which describes the percent
value of availability. Three 9s refers to 99.9% availability, and five 9s refers to 99.999%
availability—truly a high bar for reliability.

Choosing a cloud vendor 173

“To the 9s”: measures of application availability
Service-level agreements (SLAs) on availability are often measured in 9s. This
describes the target percent of unplanned availability to be achieved, typically on a
monthly or annual basis. Each 9 corresponds to a 10-fold decrease in the amount
of downtime. For an important application, such as email or a CRM system, three
9s might be a reasonable target, whereas critical services such as public utilities
would tend to target five 9s. The following table describes the amount of acceptable
downtime per year for the corresponding level of availability:

of 9s SLA target Maximum downtime per year

2 99% 3 days, 15 hours, and 40 minutes

3 99.9% 8 hours and 46 minutes

4 99.99% 52 minutes and 36 seconds

5 99.999% 5 minutes and 16 seconds

6 99.9999% 31.56 seconds

You should measure performance , like availability, as experienced by the end user,
for each specific business process important for an application. You can measure the
performance for each individual transaction but track aggregates over a given time
interval to understand the overall performance of the system. Typically, you measure
the average of the performance at a specific percentile level—such as 95th or 99th
percentile over a period of time—to develop a baseline expectation for the delivered
performance.

The availability and performance of applications in a cloud environment are due
to three primary factors. The first factor involves the performance and reliability of
the underlying hardware and software offered by the cloud vendor. The robustness
of the infrastructure depends on how redundant and well provisioned the cloud
vendor’s data centers are. As you saw in the previous chapters, cloud infrastructures
are built with huge numbers of commodity servers and are designed with the
expectation that the individual components in the system might fail. If a particular
server running several instances in a cloud goes down, it doesn’t impact the overall
advertised availability of the cloud. But if the particular instance that goes down is
the one supporting your application, the failure is indeed a problem for you. The
best way to deal with this sort of occurrence is to plan for it. You can adopt two
possible strategies:

■ Design with the possibility of failure in mind. This strategy is included in the inher-
ent design of the application and uses techniques such as horizontal scalability
and balancing between multiple instances.

174 CHAPTER 8 Practical considerations

■ Plan to fail fast but recover quickly. Make sure you have a good handle on detect-
ing the occurrence of a failure and can react quickly to bring up an alternate
instance to take over immediately.

The second factor relates specifically to the application’s design and robustness as
well as its quality. This is the realm of the application developer and is fundamentally
no different from traditional application development except for the ability to design
applications in the context of the resources available in a cloud environment. In the
early days of computing, when memory and computing capacity were expensive, it
was necessary to build applications that were stingy in their consumption of these
precious resources. As CPU and RAM became less expensive, this requirement could
be relaxed. In the same way, with the advent of the cloud, the ability to shard and
horizontally scale with less regard to cost means you can trade off stringent qual-
ity control against the ability to dynamically distribute the load. But don’t take this
idea to imply the extreme, where the code is so unreliable that it crashes repeatedly.
Rather, in a cloud environment you have an additional degree of flexibility and free-
dom as tradeoffs between code quality and dynamic scaling, to reach a desired level
of robustness.

Another factor that comes into play is somewhat different from traditional
application development. It relates to the fact that, by definition, the application’s
end users are necessarily connecting to the infrastructure via the public internet. The
network connectivity between the cloud infrastructure and the client used to access the
application affects the cloud application’s performance and availability for end users.
The availability of the application can suffer for a variety of reasons. The first involves
the loss of connectivity between the cloud provider’s data center and the internet—or,
equivalently, the loss of connectivity between the client side and the internet. The best
way you can deal with the former is to choose a cloud provider with data centers that
have multiple connections to the internet backbone . In the event of an interruption
to one, you’ll still have connectivity. Similarly, if end users are accessing the application
from within your corporate network, redundancy of connection with multiple different
network access providers can improve application availability. In the case of applications
accessed by those outside the corporate network, such as consumers of an e-commerce
application, providing such redundancy isn’t possible.

Don’t forget, for a cloud-based application, availability is subject to the macro
conditions of the internet at large. A recent error at Google related to DNS for its
free Google Analytics offering caused general slowdowns and unavailability for several
hours on the internet. For a cloud application serving an intranet audience, such
an availability hit would be avoidable for a traditional deployment. For an internet-
facing application, you probably would have a good case for getting a free pass on the
performance and availability hits taken for an event such as this, because “everyone
else in the world” is also down.

The last point to mention with regard to network effects relates to the geographic
dependence of performance on cloud applications. In a study on cloud performance,

Choosing a cloud vendor 175

Gomez measured significant variations in the response time experienced by end
users in different geographies. Figure 8.1 shows the performance of a simple web
application deployed at a sample cloud provider, as experienced by end users from
18 different geographies. If the primary users of your application are in Virginia or
the mid-Atlantic, for example, Amazon in VA may be an ideal choice. For an internet-
facing application, you can expect a wide variation in the performance experienced by
end users from their points of access around the world.

To improve the performance users experience, you could look to deploy the
application in multiple cloud data centers. Another approach would be to use
content delivery network (CDN) technologies such as those provided by Akamai and
Limelight .

ELASTICITY AND SCALE

In the architecture and design of traditional applications, an important consider-
ation relates to the scale at which it must run. When deploying the application, you
provision the appropriate amount of hardware and system capacity to meet expected
demand. In a cloud world, one of the primary assumptions is that an infinite resource
pool is available. As long as the cloud application is appropriately designed using
sharding and other appropriate horizontal-scaling techniques, you can reach a cer-
tain scale or capacity by bringing online more instances as the situation dictates. The
problem then comes down to being able to bring resources online quickly enough
for a given situation.

Figure 8.1 A comparison of the average time it takes to access the same web page for an
application running in a sample cloud provider from 18 different cities across the U.S., as
measured by Gomez

176 CHAPTER 8 Practical considerations

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

5 10 15 20
Time (seconds)

EC2 1 Instance
OPC 1 Instance

25 30 35
0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

5 10 15 20
Time (seconds)

EC2 8 Instances
OPC 8 Instances

25 30 35
0

Figure 8.2 Elasticity of EC2 and a private cloud deployment based on Eucalyptus. The left graph
shows the cumulative probability as a function of time for an instance to be available after the
request has been made to start it. The right graph shows the cumulative probabilities of the time
it takes before eight instances are available. Source: Daniel Nurmi et al, “Eucalyptus: A Technical
Report on an Elastic Utility Computing Architecture Linking Your Programs to Useful Systems,”
UCSB Computer Science Technical Report Number 2008–10, August 2008.

The term that describes the attribute of a cloud system to respond with rapidity
or velocity in response to spikes in demand is elasticity . A typical application that may
stretch the elasticity of a cloud is a media website that gets spiky load due to a news
event, such as a natural disaster. You can drive peak load s to a website in less than a
minute. The elasticity of a cloud can vary based on the underlying cloud technology as
well as intrinsic boot times of OS images.

The elasticity of Amazon EC2 and a cloud built using the open-source Eucalyptus
platform have been measured by looking at the time it took to launch one and then
eight virtual images by the team that created Eucalyptus. In figure 8.2, you can see that
on average, it took less than 20 seconds to launch 1 new instance on EC2 and less than
25 seconds for 8 new instances. For most applications, this level of elasticity is sufficient
to scale up in times of peak demand, provided you’re able to detect the need for the
extra computing power quickly enough.

In addition to the time taken to start a base image, you also need to factor in the
time required for the application to initialize and be ready for work. The general load
on the cloud system can affect the time required to start new instances. It can be
subject to variability due to the volume of traffic requests within the cloud for various
administrative functions.

OPERATIONAL SECURITY AND COMPLIANCE

Security- and compliance-related issues tend to top the list in any survey on the pri-
mary inhibitors to widespread adoption of the cloud for business critical applications.
The two main compliance standards often cited as potentially problematic for a cloud-
style deployment include the Payment Card Industry Data Security Standards (PCI
DSS) for e-commerce related businesses and the Health Insurance Portability and
Accountability Act (HIPAA) that governs privacy within the healthcare industry. Both

Choosing a cloud vendor 177

are very detailed specifications on the proper way to handle data in a safe, secure, and
auditable manner. A cloud provider , assuming it has deployed the appropriate base
security architecture, maintains sufficient physical infrastructure, and has put in place
the proper processes and procedures, can provide the necessary base for a generically
secure infrastructure. SAS 70 Type II certification, as we discussed earlier, is a measure
of whether a cloud provider has all of these necessary ingredients in place, and can be
seen as a prerequisite for PCI DSS or HIPAA.

In addition, the cloud application must be deployed with the appropriate
security standards, including correctly configured firewalls, appropriate encryption
of sensitive data, appropriate practices for key management, and so on. None of
these practices are much different than those required for an internally hosted
compliant application. The primary difference, and regulatory hurdles that often
can’t be overcome, are strict requirements for such things as direct inspection of
hardware infrastructure that may not be practical within the context of a cloud
environment. (See chapter 4 for a more comprehensive discussion of cloud security
considerations.)

INTEROPERABILITY AND PLATFORM COMPATIBILITY

Interoperability and platform compatibility refer to how easy or difficult it is to switch be-
tween different providers. These factors are often cited as primary blockers to cloud
adoption. But it’s probably arguable whether these are major practical issues worth
worrying about. In the simplest public cloud adoption scenario, where you choose
one provider, are happy with it, and stick to it, interoperability and compatibility never
come into play. Also, when choosing something more complex than a basic IaaS pro-
vider (such as PaaS or SaaS), it’s your choice. You make the implicit choice of trading
richer functionality for portability.

Several potential levels of interoperability exist. The simplest forms involve
provisioning and management interoperability. More complex forms may include the
ability to copy instances from one cloud provider to another or even migrate between
them dynamically in real time. You can argue that the only kinds of interoperability
that really matter are command and control. Next most important are a common
framework for monitoring. Interoperability of VMs and also the ability to move them
dynamically sounds cool but is probably impractical in a public cloud-type deployment
because it would take too much time to move stuff around. The good news is that the
current state of interoperability isn’t bad.

Let’s consider a scenario where you need to switch from one provider to another.
This case requires, at some level, provisioning compatibility, but not much more. For
a one-time move, a little friction and some manual processes are probably acceptable.
Let’s look at another scenario in which you need multiple simultaneous providers.
This is rare, but it can be driven by two potential business requirements. The first
relates to applications that require more capacity for short bursts than is available
from any given provider. Here, at a minimum, once again, you need provisioning.
The second potential use case, which is even rarer today, is the ability to arbitrage

178 CHAPTER 8 Practical considerations

the IaaS providers. Again, this can only work in an IaaS world because for services
to be tradable, they (by definition) need to be easy to switch between, and that must
happen at minimum cost. You can consider arbitrage between like services on several
factors. Some of these may include cost or performance. The final case is a hybrid
private-public cloud scenario. In these scenarios, you’ll see a similar requirement
regarding interoperability of provisioning . As of today, two primary standards are used
for provisioning: Amazon-style APIs and VMware .

For a public cloud provider, interoperability is a two-edged sword. Interoperability
with your competitors means it’s easy for their customers to leave them and come to
you. But the flip side is that it can work in reverse. In a world of perfect interoperability
and functional equivalence between vendors, only two factors remain for a cloud
vendor to compete on: the price of the offering and the quality and reliability of the
service they provide. SLAs are documents that cloud providers publish, detailing their
level of service. They also serve as contractual commitments to delivery of that service
level. In the next section, we’ll look in detail at the SLAs provided by several major
cloud vendors.

8.2 Public cloud providers and SLAs
As you’ve seen, much of the apprehension associated with moving applications to the
cloud is because of people’s uneasiness at ceding control over something they’ve grown
accustomed to managing on their own. SLAs are a tangible way for cloud providers to
address these concerns.

An SLA lays out specific criteria or service levels that a provider is committing
through a contractual obligation to provide. Generally written as quantifiable or
measureable metrics, they describe the satisfactory operation of the service. These
metrics must be met on a continual basis, and the inability to meet them constitutes
an SLA violation. An SLA is a way for cloud vendors to “put their money where their
mouth is” concerning any claims they may make on the quality of their offering. The
customer is entitled to compensation, usually in the form of a credit, to make up for
the vendor not being able to meet the SLA targets.

SLAs aren’t new and are commonly offered by managed service providers for
their data-center offerings. Cloud SLAs are structured similarly to those offered for
traditional hosting services but may differ in the specific metrics incorporated into the
SLA. Let’s look at the SLAs published by three major cloud providers: Amazon EC2,
Microsoft Azure, and the Rackspace Cloud. At the time of this writing, Google App
Engine had no published SLA for its offering.

8.2.1 Amazon’s AWS SLA

Amazon offers an SLA for EC2 compute and S3 storage services. The EC2 service
level is calculated on an annual basis, whereas the S3 service level is calculated over a
monthly interval. The EC2 SLA guarantees an uptime over the previous year of 99.95%.
This equates to about 4 hours and 20 minutes of allowable unavailability over a 1-year
period. In the simplest terms, Amazon’s EC2 SLA guarantees two things:

Public cloud providers and SLAs 179

■

The ability to start new instances
The ability to access instances

■

Amazon’s Region Unavailability refers to the availability of its compute regions across
multiple availability zones. Region Unavailability is defined as the customer being un-
able to either access or instantiate replacement instances in more than one availability
zone in a region over a 5-minute interval. Each of these 5-minute intervals can be tal-
lied over a rolling 1-year window; and if at any time the total calculated unavailability
exceeds 4 hours and 20 minutes, there is a violation of the SLA. Amazon only guaran-
tees access to the instances up to the edge of its own network and for factors reasonably
under its control. It excludes instance failures not specifically due to Region Unavail-
ability. In the event of an SLA breach, the customer of EC2 is entitled to a 10% credit
for the monthly service charges for that month, excluding any one-time fees charged
during that month.

Amazon S3 monthly service levels are determined on the basis of a quantity defined
as the Error Rate, which is the ratio of service requests that result in an InternalError
or ServiceUnavailable divided by the total number of requests made in a 5-minute
interval. The Monthly Uptime Percentage is defined as 100% minus the average Error
Rate over all of the 5-minute intervals in the month. The customer gets a service credit
of 10% of the monthly bill if the Monthly Uptime Percentage is lower than 99.9% and
a credit of 25% if it falls below 99%. The equivalent outage durations for the 99.9%
and 99% Monthly Uptime Percentages are 40 minutes and 7 hours, respectively.

In order to get credit for service level violations for either EC2 or S3, a customer
must send a claim to Amazon within 30 days of the event and provide a detailed
summary of their case.

8.2.2 Microsoft Azure SLA

Microsoft Azure SLAs are published for Azure Compute, Storage, AppFabric Access
Control, and SQL Server. The Azure Compute SLA is similar to that published by
Amazon for EC2. Like EC2’s, the Azure Compute SLA is set at a 99.95% level. The
Azure Compute SLA has two components: governing the connectivity of internet
roles and governing the uptime of all customer role instances. You calculate Connec-
tivity Downtime as the aggregate of 5-minute intervals when two or more internet-
facing roles in different update domains are unavailable. You use this number to
calculate the Monthly Connectivity Uptime Percentage that defines the Compute
SLA as follows:

Monthly connectivity
uptime percentage =

(Maximum connectivity minutes – Connectivity downtime)

(Maximum connectivity minutes)

You calculate the second component of the Compute SLA similarly for the uptime of
all customer roles instances.

180 CHAPTER 8 Practical considerations

The Azure Compute SLA is somewhat more stringent than the EC2 SLA in that it
calculates the 99.95% level every month, meaning that it can be initially tripped with
20 minutes of downtime, whereas in the EC2 case calculating over a yearly interval
means no penalty until more than 4 hours and 20 minutes of downtime. Availability
of less than 99.95% entitles the customer to a 10% service credit for compute services,
and less than 99% means a 25% credit.

The Azure Storage SLA closely mirrors the Amazon S3 SLA. It defines an error rate in a
manner similar to S3, with a minor difference: the aggregation interval for measurement
by default is 1 hour for Azure compared to the 5-minute interval defined by S3. Both
Azure Storage and S3 define SLAs on a monthly basis and have service credits of 10%
and 25% due for misses of the SLA at the 99.9% and 99% levels, respectively.

The Azure AppFabric Access Control and SQL Server SLAs have no direct
comparables with Amazon. Both are defined on a monthly basis, with service credits of
10% and 25% at the 99.9% and 99% levels. For AppFabric, the SLAs govern connectivity
and processing uptime percentages to the Access Control Services. For SQL Server,
they govern connectivity and basic read and write operations. Additionally, the SQL
Server SLA allows exclusion for scheduled maintenance for up to 10 hours per annum
that doesn’t count against the SLA. To claim credit for an Azure SLA violation, the
customer has to send a notification to Microsoft within 5 days of the incident of the
intention to file, and the claim must be sent in before the end of the next monthly
billing cycle.

8.2.3 Rackspace Cloud SLA

The three relevant Rackspace SLAs are called Cloud, Sites, and Files. These SLAs are
structured differently from the SLAs from Amazon and Microsoft. Unlike the other
providers’ SLAs, the SLAs from Rackspace can entitle customers to credit up to the
entire monthly fee. But as in the case of the other vendors, customers must notify
Rackspace about the SLA violation to receive credit.

The Rackspace Cloud SLA governs the functioning of the infrastructure of the
Rackspace cloud, including the HVAC in the data center, network connectivity, and
the virtual server, including compute, storage, and the hypervisor. In the case of the
data center’s power and network connectivity, Rackspace guarantees 100% uptime and
offers 5% credit for each hour of unavailability up to 100% of the total monthly bill. In
the event of a virtual server failure, the Cloud SLA guarantees a 1-hour replacement
time after the problem is discovered and a 3-hour migration time for a virtual server
operating in a degraded mode. For each hour past the initial replacement or migration
window, a 5% credit is due to the customer until the situation resolves.

The Rackspace Sites SLA governs the availability of websites, email, and databases,
and offers a service credit of 1 day per 1 hour of downtime. This SLA governs the
availability of authentication, storage, and content delivery network (CDN) services.
The minimum acceptable availability for the file-access SLA is set at 99.9%. For
availability levels lower than this, the credit due to the customer is calculated on a
sliding scale (see table 8.2).

Table 8.2 Rackspace credit amounts for SLA violations on cloud files
availability at different levels of total availability recorded during a year

Total cloud files available time Credit amount

100.0%–99.9% 0%

99.98%–99.5% 10%

99.49%–99.0% 25%

98.99%–98.0% 40%

97.99%–97.5% 55%

97.49%–97.0% 70%

96.99%–96.5% 85%

< 96.5% 100%

Now that you better understand the SLAs of several major cloud providers, let’s look at
how to measure how well they’re performing and whether the vendors are living up to
the standards they’ve set for themselves.

8.3 Measuring cloud operations
Running an application in the cloud involves using resources and infrastructure that
you don’t have ultimate control over. It’s critically important to have visibility so you
can see what’s going on, to identify and react to problems quickly. In the event that
your cloud provider caused the outage, you need to have visibility to enforce commit-
ted SLAs and hold them accountable .

In this section, we’ll look at the various ways of tracking the level of your cloud
provider’s performance. Let’s start with resources provided by the cloud providers
themselves and then look at third-party solutions to the problem.

8.3.1 Visibility, as provided by cloud vendors

At first glance, it may seem that the logical place to look for solutions to the visibility
of cloud operations is with the cloud providers themselves, and this is true to a point.
Transparency in their operations helps build credibility with customers; but ultimately,
if performance and availability aren’t good, it’s not in their self-interest to publicize it.
Furthermore, too much detail about their weaknesses could provide fodder to com-
petitors looking for an advantage. As you saw in the construction of SLAs, the onus
is on the customer to prove and document the SLA violation before the vendor will
credit you for it. Cloud providers do publish data related to how well they’re doing, but
the specificity and details of the disclosures are uneven.

WEBSITE NOTIFICATION PAGE

The simplest form of visibility that cloud providers offer their customers is a web page
that reports any abnormal operating conditions or outages that may affect a customer’s
application. These sites are typically updated when the operations staff detects a

Measuring cloud operations 181

182 CHAPTER 8 Practical considerations

problem and on an ongoing basis as it discovers information related to the issue’s
cause and resolution. You can see an example of this type of notification page in figure
8.3, which shows the Rackspace Cloud status page.

OPERATIONAL DASHBOARDS

The next, more detailed approach that cloud providers take to provide visibility into
the health of their operations comes in the form of dashboards that are updated in real
time. These dashboards show the performance of the cloud vendors’ major service of-
ferings on an aggregate basis. They display historical data, typically over the last month.

When operations are normal, they’re marked by a green indicator. Abnormal states
are depicted in yellow, often with annotations describing the general cause. Red, as
you may imagine, indicates a critical failure of the service, such as a total outage. In
figure 8.4, you can compare the operational dashboards of Amazon and Azure. You
can see a remarkable similarity in the look and feel of the two screens with respect to
their layout and the style with which they’re rendered.

Some vendors also give a more granular breakdown of the performance of their
major systems by publishing real-time statistics of the core operational parameters
important for each specific system. These views provide a historical look-back capability
over the last month to figure out any trends developing over time. In figure 8.5, you see
that Google AppEngine Datastore service performance is described in terms of three
parameters:

■ I/O throughput —The average number of Mbps available for applications
■ I/O latency —The time it takes for requests to be processed
■ Processing time —The time it takes for a canonical request to be processed

Figure 8.3 A screenshot of the Rackspace Cloud system status web page, displaying active and
resolved incidents (http://status.rackspacecloud.com/cloudservers/)

http://status.rackspacecloud.com/cloudservers/

Figure 8.4 These two parallel screenshots show the real-time status dashboards for Amazon EC2
(http://status.aws.amazon.com/) and Windows Azure (www.microsoft.com/windowsazure/support/
status/servicedashboard.aspx).

Figure 8.5 Datastore status from the Google AppEngine dashboard. Variations in performance as
well as annotations describing incidents are shown in this display (http://code.google.com/status/
appengine/detail/datastore/2010/02/02#ae-trust-detail-datastore-get-latency).

Measuring cloud operations 183

http://status.aws.amazon.com/
http://www.microsoft.com/windowsazure/support/status/servicedashboard.aspx
http://www.microsoft.com/windowsazure/support/status/servicedashboard.aspx
http://code.google.com/status/appengine/detail/datastore/2010/02/02#ae-trust-detail-datastore-get-latency
http://code.google.com/status/appengine/detail/datastore/2010/02/02#ae-trust-detail-datastore-get-latency

184 CHAPTER 8 Practical considerations

Whereas these statistics are good at an aggregate level and can tell you whether a
global issue is taking place, you need more detailed information to understand the
behavior of any specific application running on the cloud. You may be facing an issue
isolated to a small portion of the infrastructure.

APIS AND VALUE-ADDED VISIBILITY SERVICES

Amazon CloudWatch is an additional feature to improve visibility into the operation
of instances running on EC2. You can access it for an additional charge of $0.015 per
instance hour. Once activated, you can access CloudWatch via the AWS Management
Console (see figure 8.6) as well as via Web Services APIs.

Statistics are provided as aggregated metrics with a minimum aggregation period of
1 minute and are available for retrieval for the last 14 days. You can see data on running
AMIs as well as load balancers. The following three metrics are available for AMIs:

■ CPU —The average CPU utilization over the specified time interval, measured in
percent

■ Network throughput —The aggregate amount of inbound and outbound data to
the AMI over the specified interval, measured in bytes

■ Disk usage —The number and size in bytes of disk reads and disk writes over the
specified time interval

Figure 8.6 The CloudWatch feature of Amazon EC2 lets the cloud customer see metrics related to the
performance of instances. Data is reported for CPU, network I/O, and disk utilization.

You can collect the statistics created for each running instance and baseline them over
time. When you understand the system’s normal steady-state behavior, you can apply
thresholds to the data to create alerts when the system’s behavior is outside its normal
operating range, signaling a potential problem. The absence of data or the monitoring
service itself also is an indication of a potential problem with the system.

8.3.2 Visibility through third-party providers

Solutions to provide visibility for cloud applications are in their early stages of develop-
ment, but they can be placed in two main categories:

■ Solutions that attempt to instrument the virtual instances running the cloud application
to provide more data than is made available through the monitoring services—These can
be existing network systems management solutions that have been embedded
within AMIs: for example, offerings from providers such as IBM and HP .

■ Solutions that treat the cloud application as a black box—These solutions create test
transactions , sometimes called synthetic transactions , and measure the time it takes
for the cloud application to respond. For cloud applications whose primary con-
sumers are in the corporate environment, it’s relatively simple to set up a process
from within the corporate firewall that sends test transactions to the cloud ap-
plication at periodic intervals. You can baseline the response time for processing
the transactions. You can configure alerts either when response times fall out
of an acceptable range, or when the system detects that the application isn’t
responding.

For a cloud application whose consumers are across the internet, several services can
measure the system’s performance and availability from multiple locations around
the globe, such as AlertSite , Gomez , and Keynote . Some third-party vendors—such
as Apparent Networks with its Cloud Performance Center (CPC) and Hyperic with
CloudStatus—have put together publicly accessible dashboards that track the perfor-
mance and availability of the various cloud vendors as seen from different geographi-
cal perspectives. They also provide advisory notices when they detect a serious outage
of a cloud provider.

Figure 8.7 shows Apparent Networks’ real-time cloud visibility dashboard . This
dashboard allows you to compare the performance and availability of various leading
cloud providers and also create composite metrics to stack-rank the providers according
to parameters you consider the most important.

Independent third-party measurements of the operational reliability of the various
cloud vendors are an important element of the cloud ecosystem. They provide needed
visibility to cloud customers seeking to understand the relative merits of various
providers and help to provide transparency into the nature and duration of outages
when they do occur. Also, the competitive aspect of public benchmarks provide the
cloud vendors an unvarnished view of their performance with respect to their peer
group and can help them to understand what it takes to be the best.

Measuring cloud operations 185

186 CHAPTER 8 Practical considerations

8.4 Summary
A cloud application is different from a conventionally deployed application in the level
of control that’s ceded to a third party. In a traditional deployment of an application
with a colocation provider, you cede control over physical security, power, and network
connectivity to a third party, but you retain control over the server hardware, operating
systems, and application software. In a cloud deployment, you extend the ceding of
control to include the server hardware and the operating system (through the virtual-
ized environment). In comparison, this should be a good thing, because there’s less to
worry about as long as the provider’s systems operate at a sufficient level of reliability.

The operating principle for these systems can be summed up using former President
Reagan ’s approach to nuclear disarmament: “Trust, but verify.” You’ll need the necessary

Figure 8.7 Apparent Networks provides a free service that monitors and compares
the performance of various cloud providers as measured from geographical locations
across the U.S. The interface includes a user-definable scorecard that can be
configured with different weighting factors to rank the providers. The company
also has an advisory service that documents outages of major cloud providers
(www.apparentnetworks.com/CPC).

http://www.apparentnetworks.com/CPC

data to measure the cloud provider’s compliance to the committed service levels. A
practical strategy for maintaining good performance starts by assessing availability
and performance as experienced by end users through continuous monitoring of
the deployed application. When you detect a problem, instrumentation of the cloud
applications is useful in determining whether the problem is of your own creation or is
due to a problem with a cloud provider. Independent third-party assessments of cloud
availability and performance can serve as a useful check before you draw conclusions.

Now that you’ve spent some time looking at the practical operational issues involved
in managing an application deployed to the cloud, it’s time to switch gears and get
back to the bigger picture. In the final chapter of the book, let’s leave the world of
cloud computing as it exists today and fast-forward to see what the long-term future of
IT looks like and how cloud computing will impact it.

 Summary 187

9

188

Cloud 9:
the future of the cloud

This chapter covers
■ The most significant transformation IT has ever undergone

■ Ten predictions about how the cloud will evolve

■

An overview of the book

Ten predictions about how application development will evolve

■

The previous chapters as well as the introduction have covered a broad range of
topics—defining who can best use this book, what the cloud is, and the what, when,
and how of moving to the cloud. It’s consistent with that progression to end with a
set of predictions for the future of cloud computing. We’ll do our best to paint both
a medium- and long-term picture, keeping with the themes of the rest of this book
to make them useful. We’ll give you more information and perspective about what
this means for you and your business, and prepare you to make informed decisions
about how and when to begin utilizing some aspects of the cloud.

You’ll also see how we think IT will look a generation from now—it will look like
what people have for years been calling utility computing .

The most significant transformation IT has ever undergone 189

UTILITY COMPUTING The packaging of computing resources, such as computation
and storage, as a metered service similar to a traditional public utility (such
as electricity, water, natural gas, or a telephone network). This system has the
advantage of a low or no initial cost to acquire hardware; instead, you can rent
computational resources. Customers with large computations or a sudden peak in
demand can also avoid the delays that would result from physically acquiring and
assembling a large number of computers. This term predates cloud computing;
but as you can see, this is what cloud computing is becoming.

Making predictions, particularly long-range ones, is a risky business, as the short list of
failed past predictions—at times both wrong and irrelevant—in figure 9.1 shows.

9.1 The most significant transformation IT has ever undergone
In the case of the cloud, we’re confident that the future will involve a pervasive, game-
changing reconstruction of IT from the ground up that’ll take a full generation to
occur. We’ll break this section into two parts and look first at consumers and the
cloud—including mobile computing—followed by the cloud in enterprises.

9.1.1 The consumer internet and the cloud

According to William Gibson (The Economist, December 4, 2003), “The future is already
here—only, it’s not evenly distributed.” This quotation describes the present cloud posi-
tion well. If you look at the consumer-facing internet, cloud usage is already pervasive.
But for enterprise computing, widespread use of the cloud is still in the future.

Figure 9.1 This list of predictions made about computing over the
decades is now amusing.

190 CHAPTER 9 Cloud 9: the future of the cloud

The original generation of cloud computing infrastructure was built by companies
such as Amazon and Google to solve their own problems in the internet-consumer
space (referred to here as internal clouds). A 2008 survey conducted by the Pew
Internet & American Life Project (see figure 9.2) found that in every age group
other than 65 plus, the majority of users used the cloud infrastructure in at least
one activity.

In the near future, probably within the next two to three years, we expect that the
use of applications backed by the cloud will be ubiquitous, with practically all internet
users using the cloud in some form or another. Three primary drivers are responsible
for this shift to the cloud:

■ Application standardization on the browser platform
■

The mobile revolution
Miniaturization and standardization of device based computing

■

Let’s now discuss each of these three drivers in more detail in turn.

APPLICATION STANDARDIZATION ON THE BROWSER PLATFORM

Browsers first came out in 1991. The initial browser with significant adoption was
Mosaic’s Mozilla browser, which had rudimentary graphical capabilities. The browser
sent a request to retrieve bits of static text and images, and the server on the other end
of the network sent the requested data. From there, browsers and the web itself evolved
to become more dynamic, through the introduction of client-side scripting capabilities
such as JavaScript by Netscape in 1995 and Flash by Macromedia in 1996. You can see

Figure 9.2 Cloud computing activities by different age cohorts from the Pew Internet & American
Life Project of 2008. The survey shows that the younger age groups are using the cloud heavily and
will continue to do so. The greatest usage is in the millennial group (87%), which does at least one
activity (email, photos, online applications, video, storage, or backups) using the cloud.

The most significant transformation IT has ever undergone 191

in figure 9.3 Mozilla and the rest of the highly popular browsers in the order in which
they were initially released.

In 1999, the Servlet Specification version 2.2 introduced the concept of the web
application in the Java language. At that time, both JavaScript and XML had already
been developed, but Ajax hadn’t been announced, and the XMLHttpRequest object
had only been recently introduced in Internet Explorer 5 as an ActiveX object.

In 2005, we heard the term Ajax (acronym for Asynchronous JavaScript and XML)
for the first time. Applications such as Google Maps and Gmail started to make their
client sides more interactive with Ajax. Web applications could retrieve data from the
server asynchronously in the background without interfering with the display and
behavior of the existing page. Today, browsers and servers interacting over the internet
form a highly interactive, generally useful application delivery system for content,
commerce, and collaboration.

JavaScript finally began the process of browsers enabling rich web-based
applications. This step moved us away from the “submit-button web” applications
of that generation (fill in edit boxes, and click a submit button) more toward the
“green screen” applications of mainframe days (full-fledged applications running
on a remote computer). A key point to note is that the increased capabilities have,
for the most part, proceeded without major loss of interoperability. For application
developers today, the web is the platform, period. All web-based applications work as
they would in any standards-compliant browser. As the cloud has more to offer and
as client devices get simpler, a rich browser becomes all you need to interact with
all the applications you use. You can access everything via a browser (considered a
thin client) and a set of network-enabled applications downloaded over the network.
Because browsers are so rich in their capabilities and because applications today
provide functionality via these browsers that used to be available only via fat clients
(think of Microsoft Office versus Google Docs), there need not be a loss of capability
or productivity.

With Chrome , Google is the first to acknowledge that the browser is evolving into an
operating system. Google Chrome OS is an open-source, lightweight operating system
that can run on a device with limited computing and storage capacity. As the operating
system and the browser merge, the importance of the cloud increases as it serves as the
de facto home for applications demanding large compute or storage.

Mozilla
1993

Netscape
1994

Internet Explorer
1995

Opera
1996

Safari
2003

Chrome
2008

Firefox
2004

Figure 9.3 Major browsers and their initial release dates: the original Mozilla browser, Netscape’s
Navigator , Microsoft’s Internet Explorer , Opera Software ASA’s browser , Apple’s Safari , Mozilla’s Firefox ,
and Google’s Chrome .

192 CHAPTER 9 Cloud 9: the future of the cloud

Let’s move on to the second trend—the evolution of client hardware devices—and
how that relates to the future of cloud computing.

MINIATURIZATION AND STANDARDIZATION OF DEVICE-BASED COMPUTING

The idea of a network computer was floated as early as the mid-1990s. Sun was the first to
come up with a network computer to follow through with the corporate tag line “the
network is the computer.” These machines, primarily deployed in an enterprise envi-
ronment, weren’t broadly adopted. Figure 9.4 shows a sampling of the attempts at less
powerful computers that operate with little or no local storage.

Apple also came out with a concept aimed at the business or prosumer audience.
Apple’s eMate was a subcompact laptop—sort of a cross between the Newton PDA
and a conventional laptop. Like the Newton , it wasn’t a hit and faded from view and
memory quickly.

Much more recently, we’ve seen the emergence of a new category of personal
computers called netbooks (sometimes called mini notebooks or ultraportables).
Netbooks are small, light, and inexpensive laptop computers suited for general
computing and accessing web-based applications (the cloud) and often marketed as
“companion devices,” because they augment a user’s other computer access.

Taking this a step further is the tablet concept. In general terms, a tablet PC refers
to a slate-shaped mobile computer device, equipped with a touchscreen or stylus.
This form factor offers a more mobile computer. The term tablet PC became popular
through a product announced in 2001 by Microsoft. The concept was too new, and few
were sold. In 2010, when Apple finally released the iPad , the concept of the mobile
device being only a tablet PC finally stuck.

Figure 9.4 The evolution of network computers, clockwise from upper left:
Sun’s Network Computer, Apple’s eMate , Microsoft’s Tablet PC ,
Apple’s iPad, and the current generation of netbook

The most significant transformation IT has ever undergone 193

Parallel to these developments, mobile phones were evolving from devices exclusively
used for voice communications to those able to function as a PDA, send text messages,
and interact with simplified web pages. These evolved into what is known as a smart-
phone —a mobile phone offering advanced capabilities, often with PC-like functional-
ity. Most important, a smartphone has a fully functional browser and can therefore act
as a thin client for any application that runs in the cloud.

Smartphone adoption
In the U.S., 19% of consumers use a smartphone now; 49% plan to purchase one
within two years (source: The Kelsey Group).

The smartphone market is growing at 30% per year and is now more than 180 million
units per year, surpassing unit sales of PCs. Smartphones globally already make up
37% of handsets and continue to grow at 30% annually.

Apple transformed and energized this market with the iPhone’s large touch screen,
powerful networking, and huge number of applications; in a record short time, the
iPhone snared 15% market share.

Over 2 billion iPhone applications have been downloaded. All run in the cloud.
The iPad runs all iPhone applications and will only accelerate the use of mobile
applications running in the cloud, as will Android phones, the smarter Blackberries,
and new internet-browsing-capable phones coming out all the time.

In the future, you’ll see tablets and smartphones displace the primacy of the PC as the
primary personal computing device. These devices will run a combination of resident
applications and cloud applications and will be backed by data storage in the cloud.
This time, the idea is sticking because the concept of a cloud has finally caught up with
the visionary client idea.

THE MOBILE REVOLUTION

Cloud computing is a disruptive force in the mobile world for two reasons: the number
of users the technology has the power to reach—all the smartphones plus all the users of
cloud applications on their PCs (Facebook alone represents 400 million consumers using
the cloud from their computer or their smartphone); and the way applications are distrib-
uted today. Currently, mobile applications (including iPhone applications) are tied to a
carrier. If you want an iPhone application, for example, you must first have a relationship
with the mobile operator that carries the iPhone. If you want a Blackberry application,
the same rule applies. But with mobile cloud-computing applications, as long as you have
access to the web via a browser, you have access to the mobile application.

The future of mobile computing is simple to predict. In lots of different form
factors, from netbooks to iPads, and on countless forms of smartphones that get
increasingly smarter, you’ll do most computing in an untethered (that is, wireless)
fashion on lightweight computers accessing the cloud. And this will be true within
the next cycle of cell phone contract renewal. (The cell phone industry has fostered

194 CHAPTER 9 Cloud 9: the future of the cloud

a culture of highly accelerated consumer upgrades through their two-year contract
renewal process aided by handset prices they subsidize.)

By the end of the first decade of this millennium, it became clear that consumers,
not business users, were now driving smartphone adoption. It also indicated the start
of the massive use of the cloud. (Hence, the major cloud providers went on a frantic
building spree to create those $500 million data centers.) This simple change of putting
consumers in the driver’s seat cemented the acceptance of the cloud.

Consumers have no concerns about running their applications in the cloud (they
use Google search, Gmail , Flickr, YouTube , and Facebook with no hesitation) and will
continue to gravitate to applications that have the full features and responsiveness they
like. As consumers take over the lead role in this massive shift in the way computing is
done, their vast demographics will drive more enterprises to drop their reluctance and
move to the cloud.

9.1.2 The cloud in the enterprise

Enterprise adoption of the cloud will proceed more slowly than the rapid rise for consum-
er-facing internet applications. This isn’t surprising, because enterprise applications are
less often entirely new as is most often the case for the consumer internet; they often rely
on reusing existing functionality. Compuware , in working with its customers and market
analysts, gathered data about where it sees the mix between mainframe, client-server, and
various forms of cloud computing going over the next few years; see figure 9.5.
Looking longer term, we see the future of cloud computing in the enterprise proceed-
ing through the following phases over the next 20 years:

■ Phase I —Startups doing it hard and manually
■ Phase II —Internal cloud migration

100%

2009 TimePrivate/Public
Demarcation

Private Non-Virtualized
Client/Server/Web Apps.

Private Mainframe

Private
Virtualized

Public Saas

Public WS/SOA
(PaaS)

Public Virtualized
(IaaS)

P
er

ce
nt

ag
e

of
 C

ap
ac

ity

Figure 9.5 The projected mix of computing done via mainframe, client-server, and various types of
clouds in enterprises over the next few years. Source: Compuware.

The most significant transformation IT has ever undergone 195

■ Phase III —Ascendancy of the private cloud
■ Phase IV —Transition to utility computing

In the subsequent sections, we’ll go through these phases in sequence. You should
view the phases as general characteristics of how the cloud will look over time, with the
elements of each phase present throughout. Refer to figure 9.5 as you go through this
discussion. Let’s begin by looking at where we are today.

PHASE I: STARTUPS DOING IT HARD AND MANUALLY

We’re today at an admittedly difficult stage: the beginning. This stage only works well
for the smallest companies that have little-to-no existing IT infrastructure investment.
They’ll lease, buy, or build all applications. Many venture capitalists won’t fund startups
to purchase any IT equipment. For most startups this is no hardship, and it’s natural
for them to begin using the cloud for all their computing needs from day one. Amazon
still leads the way in terms of customer share. Most of its estimated 500,000 customers
are small companies.

This stage doesn’t have enough standardization to avoid the lock-in that the cloud
critics worry so much about. Not enough vendors and not enough competition make
this an uneasy place to live. Big companies are worried about security and still believe
(somewhat erroneously, as you’ve seen) that their data is more at risk in someone else’s
cloud than in their own data centers.

At this stage, SaaS is well established and growing; the next most successful cloud
model is IaaS . In IaaS, as you’ve learned in this book, it takes pretty sophisticated
programmers to lead the way, and everything has to be done manually the hard
way. But there’s light on the horizon as standards, frameworks, and tools make this
increasingly less difficult. The bigger enterprises may remain hesitant and reluctant
during this early phase.

PHASE II: THE INTERNAL CLOUD MIGRATION

Phase II, which should take place in the short term (the next five years), will be the
shift to an internal cloud model. This is where an enterprise with existing IT infrastruc-
ture investment applies the concepts of cloud computing (on-demand resources, pay-
as-you-go pricing, and the appearance of infinite scalability) to resources wholly owned
by the enterprise consuming the service. They’re building this out now as the adoption
of virtualization leads companies down this path naturally.

Internal clouds are appealing to IT departments at many levels, although obviously
they won’t provide the economies of scale that public clouds will offer over time. But
those standing outside the enterprise too quickly forget about the inability of most
public clouds to support legacy applications without which the enterprise would
cease to operate. In contrast, you can build internal cloud s to handle old and new
applications alike.

Perhaps the most pervasive argument is that internal clouds allow you to maintain
control over security, service levels, and regulatory compliance in a way that public
clouds aren’t yet able to offer.

196 CHAPTER 9 Cloud 9: the future of the cloud

The move to internal clouds makes sense as a first step, and it should help to prepare
enterprises for the real cloud. What will push them in that direction is the fact that
choosing an internal-cloud approach doesn’t provide the full benefits of public-cloud
computing offerings. With much smaller scale, the economics aren’t in an internal
cloud’s favor. Consequently, this phase of the evolution won’t last long for any given
company.

PHASE III: ASCENDANCY OF THE PRIVATE CLOUD

Private clouds, unlike internal clouds, will have a long-term role in the cloud ecosys-
tem. And they’ll play a dominant role in the medium term of 2 to 10 years from now.

As you saw in chapter 4, private clouds overcome the “rewrite everything” effect
of “own nothing” cloud computing, rendering a much lower barrier to adoption for
enterprises. Additionally, they provide the degree of trust that enterprises seek from
internal clouds, including the ability to change the mix of cloud services consumed
completely at their own discretion.

In general, those that opt for internal clouds will move to private clouds. And
many will see private clouds initially as the best way to migrate. Once ensconced in a
private cloud, there’s a direct route to migrate all application workloads from wholly
owned infrastructure to public clouds, where the economics of owning nothing
come into play. The best part about this strategy—and the reason for the popularity
of the private cloud computing model for years to come—is that it gives enterprises
the perception that everything is running in their own data centers under their
complete control.

PHASE IV: TRANSITION TO UTILITY COMPUTING

Utility computing has been a dream of many for several decades. But the infrastruc-
ture and maturity of both the cloud environment and enterprises hasn’t been any-
where close to what is needed to make utility computing a reality. The basis of the
dream goes back to the analogy of electric power in the early 1900s. Previously, many
beer breweries had their own power generators. They needed lots of power, and power
from an electric utility either wasn’t available or was unreliable. Being an expert in
electricity shouldn’t be a prerequisite to brew beer. The beer brewers couldn’t wait to
dump their own generators and start using electricity provided by experts to whom
they paid a monthly fee. Similarly, enterprises realized that they needed computers to
run their businesses. But unlike the beer brewers buying electricity from a utility, enter-
prises couldn’t opt not to run their own computer centers—until the day of ubiquitous
cloud computing. Many today see the utility-computing model finally on the horizon
as the solution.

It won’t arrive quickly. It may take a generation (20 years) to fully transform
computing. But these transformations happen both faster and slower than anticipated.
In hindsight, things always seem to have happened faster than expected. But from
the forward-looking perspective, living through these transformations makes them

The most significant transformation IT has ever undergone 197

appear slower than desired. Big shifts similar to the one underway now have, in the
past, taken a decade or so to fully wash in—for example, general adoption of client-
server and personal computers. This one will take even longer because many of the
current generation of corporate decision-makers will have to retire before their
organizations can release their psychological commitment to keeping local physical
control of data.

Figure 9.6, similar in concept to the Compuware diagram shown in figure 9.5, is
our view of the next 20 years. It shows what percentage of overall computing capacity
is allocated to what type of IT infrastructure, be it private cloud, internal cloud, public
cloud, or the more traditional captive data center.

Now that you’ve seen the general pattern of the evolution and future of cloud
computing, let’s look at some specific predictions of what you can expect to happen.

20
10

20
30

Private CloudInternal Cloud

Public Cloud

All Other

20
20

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Figure 9.6 The author’s predictions for the role of clouds vs. non-cloud-based computing over the
next 20 years. Today, less than 3% of computing is done via clouds. Twenty years from now, public
clouds will be the dominant approach for corporate IT services. Private clouds, which will initially
grow to more than 35% of all IT, will shrink back to under 25%; internal clouds will all but
disappear; and the remaining percentage of do-it-yourself IT (such as corporations with their
own data centers) will be only 10%.

198 CHAPTER 9 Cloud 9: the future of the cloud

9.2 Ten predictions about how the cloud will evolve
In the first of two prediction sections, we’ll focus on how the infrastructure evolves. In
short form, the list of predictions about how the cloud will evolve is as follows:

■ The cloud will be cheaper, more reliable, more secure, and easier to use.
■ The cloud will become a real engine of growth for early adopter companies.
■ Cloud providers’ costs will be less than 25% of what corporate data centers cost.
■ Cloud mega-data centers will contain 500,000 servers costing $1B by 2020.
■ The best cloud provider operator’s ratio of administrators to servers will go from

1:1,000 servers to 1:10,000 servers by 2020.
■ Open source will dominate the future of the cloud.
■ Pragmatic standards come from market leaders; Amazon’s API will lead

the way.
■ An ultimate ISO cloud standard will emerge.
■ Government will lead enterprises in cloud adoption.
■ SaaS will grow and stay current by using the basic web standards that will them-

selves continue to advance.

Let’s begin with our first prediction.

9.2.1 Cheaper, more reliable, more secure, and easier to use

The cloud will be cheaper, more reliable, more secure, and easier to use. Relentless economies of
scale are driving down cloud providers’ costs as cloud providers build bigger data cen-
ters, get volume discounts from commodity hardware providers, demand better rates
from power companies, and continue to use as much open-source software as possible.
Fierce competition keeps prices low. As de facto standards emerge and with the prom-
ise of more widely adopted international standards to come, less and less lock-in will be
possible; that will further drive competition until cloud services are a pure commodity
based almost entirely on price.

Meanwhile, competition and strident demand from customers will force cloud
providers to promise stronger SLAs to which they’ll have to adhere. Most providers will
have multiple locations each with excess capacity to compensate hardware or network
failures by moving workloads to different banks of servers or entirely different facilities
if the failure is broad in scope.

The effort expended to make clouds more secure and compartmentalized for data
integrity and for privacy will pay dividends in the long term. Ultimately, as we have
noted, even the public clouds will provide better data security and protection than
the vast majority of either government or enterprise data centers. Because data in
transit and data stored in cloud storage facilities will remain encrypted in all types of
clouds, data security in non-cloud data centers will improve as they adopt best practices
initially demonstrated by the public and private clouds.

Ten predictions about how the cloud will evolve 199

Ease of use will continue to improve, as all competitive software systems tend to do,
as users provide feedback and vote through their dollars for the best service providers.
Amazon is winning today, and that’ll push many cloud providers to use the Amazon
API more broadly; but usability will still come under heavy scrutiny and will improve as
more customers use the systems and report issues.

The end result means that the cloud will be cheaper, more reliable, more secure,
and easier to use than corporate data centers.

9.2.2 Engine of growth for early adopters

The cloud will become a real engine of growth for early adopter companies. Five hundred thou-
sand companies are already using Amazon’s AWS. As discussed in chapter 2, most
startups no longer buy servers; instead, they use the cloud for everything they formerly
would have expended significant capital equipment dollars for. This leaves precious
dollars for other things that can help companies get to market faster and out-market
and out-sell competitors that aren’t using the cloud.

As is always the case, the real engine for growth in any market is innovation. The
reason the cloud strongly supports innovation —and therefore drives growth—is that
it changes a company’s willingness to experiment. Because it’s so cheap to provision
new virtual instances and build a product to test a new idea, companies want to try it.
Paying only for what you use means failures are quickly turned off and de-provisioned
and are immediately no further drain on the company’s resources. But experiments
that are a big success take off, get broader exposure, and, because they’re running in
the cloud, can expand to keep up with demand. Companies try things they couldn’t
try before. This becomes a vehicle for growth for companies that are early adopters of
the cloud.

The cloud will be such an important engine of growth for early adopters that those
companies will get to market faster, will compete better, and will win compared to
laggards that don’t use the cloud.

9.2.3 Much lower costs than corporate data centers

Cloud providers’ costs will be less than 25% of what corporate data centers cost. Already, the
cloud providers’ data center costs are much lower than what corporate data centers
spend because the mega centers get huge economies of scale, receive significant tax
breaks, and continue to drive down costs each year.

These mega data centers may quickly become an “if you can’t beat them, join them”
proposition. Intel now says that by 2012 mega data centers will account for 25% of its
server chip sales. Dell created a specialized division to address the needs of customers
buying more than 2,000 servers at a time and now declares that division as the fourth-
or fifth-largest server vendor in the world. This also means the big server consumers
can profoundly influence Intel (or Dell) design decisions and can negotiate huge
volume discounts that no one else can get.

200 CHAPTER 9 Cloud 9: the future of the cloud

The big cloud data centers are using more scale-based approaches to wring out even
more cost. For instance, they’re beginning to eliminate redundancy in each facility
(such as generators and batteries) by building sophisticated software that can move
workloads to other facilities when failures occur.

The gap between corporate data savings and cloud provider data center savings
will continue to widen, and by 2020, cloud provider costs will be less than 25% of what
corporate data centers cost.

9.2.4 500,000 servers costing $1 billion by 2020

Cloud mega data centers will contain 500,000 servers costing $1 billion by 2020. A small list
of enormous cloud providers, including Amazon, Apple, Google, Microsoft, Oracle,
IBM, and even Facebook, are in a class by themselves when it comes to the size of
their data centers. Examples of centers this expensive include Microsoft’s Chicago
facility, which is 700,000 square feet and cost $500 million; and the company’s San
Antonio facility, which is 11 acres and cost $550 million. Apple also has one in North
Carolina (chosen because of the tax breaks); it’s over 500,000 square feet and is
shown in a rare photo in figure 9.7. Google has 40 data centers around the globe, all
roughly this size.

All of these cloud providers are building data center s that have in the range of
50,000–100,000 servers; on the low end, when amortized over three years, such a
center costs about $53 million per year. That constitutes about 45% of the total
cost of the data center. Another 25% goes to power distribution and cooling ($18
million/year); 15% is for electric utility costs ($9 million/year, of which 59% is for
IT equipment, 33% for cooling, and 8% for power losses); and 15% is for network
costs. These data centers consume as much power as aluminum smelters, silicon

Figure 9.7 A rare photo of Apple’s new 500,000 sq. ft. North Carolina cloud data center site

Ten predictions about how the cloud will evolve 201

manufacturers, and automobile factories. All the data centers in the world combined
use more power then Holland.

9.2.5 Ratio of administrators to servers: 1:10,000 by 2020

The best cloud provider operator’s ratio of administrators to servers will go from 1:1,000 to
1:10,000 servers by 2020. Note that the breakdown of costs in the previous section didn’t
list labor. This is because mega data centers have so much scale that the cost of labor
becomes miniscule, particularly because they’ve invested heavily in software to auto-
mate the operation. A typical corporate data center operates at a ratio of about 1 staff
member to every 100 servers, whereas the best cloud providers operate instead at a
ratio of 1:1,000 servers. These facilities draw the best IT professionals because they’re
so advanced and specialized that it’s a good career move. Also, the cloud providers pay
employees better for their skills than corporate data centers do.

The cloud data centers run so efficiently because they’ve had to build high levels
of automation into their operations to offer a basic cloud offering. One way they can
achieve high levels of automation is by standardizing their platforms. You can request
only a handful of different platforms from Amazon. But a typical corporate data
center has a huge number of applications (frequently in the thousands) with literally
hundreds of different possible configurations of hardware and software. Exacerbating
this complexity is the fact that forecasts for usage patterns and scale requirements are
usually uncertain. This pushes a tendency to overprovision so as not to get caught short
of capacity on important applications.

The end result of this constant drive for more automation, hiring the best people, and
creating larger data centers, will get the cloud providers to a ration of 1 administrator
for every 10,000 servers in the next decade.

9.2.6 Open source dominance

The cloud of the future will be dominated by open source. Linux is the operating system of
choice in the cloud. Frequently, you see cloud providers running RedHat Linux. Xen
is the hypervisor of choice. In the hypervisor world, the most common alternatives
to Xen are Microsoft and VMware, neither of which is cheap. Amazon’s hundreds of
thousands of servers supporting EC2 run the Xen hypervisor as do cloud providers
3Tera and Rackspace . Such heavy-duty usage will keep the open-source community
building the basic infrastructure for the cloud busy and vibrant.

Open source is a powerful force because acquisition and licensing costs of open-
source software is 80% lower than comparable proprietary offerings. You’ve already seen
how cost sensitive (due to their scale) the cloud provider s are. Naturally, open source has
been driving the cloud evolution and will continue to do so. But it works both ways—the
rapid advancements of the cloud fuel the open-source movement as well. The cloud is
perfect for open-source developers to use for development, testing, and storage at low
cost for the sometimes shoestring operations of open-source developers.

202 CHAPTER 9 Cloud 9: the future of the cloud

You don’t need a crystal ball to predict that the cloud of the future will be much more
open source.

9.2.7 Pragmatic standards via Amazon’s APIs

Pragmatic standards come from market leaders; Amazon’s APIs will lead the way. You can mea-
sure the maturity of an IT technology by the number, adoption rate, and depth of its
standards. The cloud—at least the IaaS portion of the cloud—today is at the early edge
of that scale, but that’ll change rapidly. As you’ve seen, forces are in play that will make
the cloud the platform shift that dwarfs all others.

As you’ve read earlier, a host of standards groups have formed and are starting to
work on various aspects of cloud standardization and APIs. But necessity will drive some
groups to create their own standards and not wait for standards bodies. For instance,
Zend , Microsoft , IBM , Rackspace , Nirvanix, and GoGrid developed the open-source
Simple Cloud API to interact with many different cloud providers. Initially, this was an
effort to make it easy for PHP developers (PHP is a common workload in IaaS clouds)
to access services on many clouds. Early adapters will be for file-storage services,
document-storage services (initially to include Windows Azure table and Amazon
SimpleDB support), and simple queue services (initially including Azure queues and
Amazon SQS).

Other vendors’ clouds will co-opt and retarget Amazon’s APIs as fast as Amazon
comes out with them. Amazon uses both a RESTful API and a SOAP API for most of
its services. Usually, the RESTful will be the one most copied and used elsewhere. It’s
simple and easy to use and works with any application framework.

In the last decade, the IT community has discovered that it works best to take
something that one vendor—the leading vendor in a category—has developed and
proven, and turn that into a standard as opposed to creating a study group and a
standards committee and go through the long process of releasing an international

Rackspace open sources cloud platform and collaborates with NASA
From a July 19, 2010 press release:

More than 25 companies, including Citrix and Dell , support open-source cloud
platform to accelerate industry standards.

Rackspace Hosting today announced the launch of OpenStack , an open-source
cloud platform designed to foster the emergence of technology standards and
cloud interoperability. Rackspace, the leading specialist in the hosting and cloud
computing industry, is donating the code that powers its Cloud Files and Cloud
Servers public-cloud offerings to the OpenStack project. The project will also
incorporate technology that powers the NASA Nebula Cloud Platform . Rackspace
and NASA plan to actively collaborate on joint technology development and leverage
the efforts of open-source software developers worldwide.

Ten predictions about how the cloud will evolve 203

standard. You can expect a lot of standards to begin as proprietary cloud APIs and
evolve into industry-wide standards over a period of time.

As in any major industry transformation, the leader gets to call the shots or, in this
case, establish the initial standards. Amazon is that leader.

9.2.8 Ultimate ISO cloud standard

An ultimate ISO cloud standard is coming. Due to the hype, it’s easy to forget that the
cloud is new. New things don’t have standards. Many people say they’re sitting on the
sidelines because there are no standards yet. But we can’t have standards too early, be-
cause we don’t know enough about usage patterns to get them right. Having said that,
standards are critical, and they’re coming. Standards drive choice, and choice drives
market expansion. These forces are too strong for standards not to come quickly.

The Open Cloud Consortium (OCC) is already working on interoperation of
different clouds. The Cloud Security Alliance (CSA) is actively urging common best
practices. The (controversial) Open Cloud Manifesto urges vendors to agree on
basic principles and interoperability. The few strongly pro vendors are AMD , IBM ,
Rackspace , Sun , and VMware . But the most important players are against the idea,
including Microsoft , Google , and Amazon . They think interoperability at this early
stage will hurt them the most. That’s a problem and probably spells doom for this
particular standards effort.

The group of standards bodies called the Cloud Standards Coordination Working
Group includes the Organization for the Advancement of Structured Information
Standards (OASIS), Object Management Group (OMG), Distributed Management
Task Force (DMTF) , Storage and Network Industry Association (SNIA) , Open Grid
Forum (OGF) , CSA , OCC , Cloud Computing Interoperability Forum (CCIF) , and the
TM Forum . This group is looking at standardization in a number of specific areas,
including security; interfaces to IaaS; information about deployment, such as resource
and component descriptions; management frameworks; data-exchange formats and
cloud taxonomies; and reference models.

ISO formed a subcommittee for SOA and web services and a study group for cloud
computing called SC38 , “Distributed application platforms and services (DAPS)”
(www.iso.org/iso/standards_development/technical_committees/other_bodies/iso_
technical_committee.htm?commid=601355). It addresses the following 10 things:

■ The end user is the primary stakeholder in cloud computing. User-centric systems en-
rich the lives of individuals, education, communication, collaboration, business,
entertainment, and society as a whole.

■ Philanthropic initiatives can greatly increase the wellbeing of mankind. Enable or en-
hance cloud computing where possible.

■ Openness of standards, systems, and software empowers and protects users. Adopt exist-
ing standards where possible for the benefit of all stakeholders.

■ Transparency fosters trust and accountability. Decisions should be open to public
collaboration and scrutiny and never be made behind closed doors.

http://www.iso.org/iso/standards_development/technical_committees/other_bodies/iso_technical_committee.htm?commid=601355
http://www.iso.org/iso/standards_development/technical_committees/other_bodies/iso_technical_committee.htm?commid=601355

204 CHAPTER 9 Cloud 9: the future of the cloud

■ Interoperability ensures effectiveness of cloud computing as a public resource. Systems
must be interoperable over a minimal set of community defined standards and
avoid vendor lock-in.

■ Representation of all stakeholders is essential. Vendor(s) shouldn’t dominate in-
teroperability and standards efforts.

■ Discrimination against any party for any reason is unacceptable. Minimize barriers to
entry.

■ Evolution is an ongoing process in an immature market. Standards may take some time
to develop and coalesce, but activities should be coordinated and collaborative.

■ Balance of commercial and consumer interests is paramount. If in doubt, consumer
interests prevail.

■ Security is fundamental, not optional. Lack of security would kill cloud adoption.

ISO takes a long time for a new international standard to come out. But its involvement
shows the cloud is now a serious and permanent part of the IT constellation. The ultimate
ISO standard that results will have widespread and dominating influence on the industry.

9.2.9 Government leadership in cloud adoption

Government will lead enterprises in cloud adoption. Cloud computing is currently playing a
big role in the federal government because the current U.S. CIO is a strong proponent
of the economic benefits of the cloud for government computing and also because the
U.S. government IT budget is $76 billion. NASA is using cloud computing and social
media to become more efficient and to lower costs. The City of Los Angeles is an early
local government entity to fully embrace the cloud. Other major government cloud
projects include the U.S. Army ; Department of the Treasury ; Bureau of Alcohol, To-
bacco, Firearms, and Explosives; and many others.

The biggest move may be that of the General Services Administration (GSA) . It
has decided to prebid cloud services so that all federal agencies can select and deploy
cloud-based data and applications on the fly at predetermined rates and feature
sets. Further, the GSA has created the Federal Risk and Authorization Management
Program (FedRAMP) , made up of members of the Department of Defense (DoD) , the
Department of Homeland Security , and the GSA , that’ll inspect cloud providers for
security, privacy, and other best practices. This will keep the heat on providers to stay
current with best practices in order to remain on the approved list. The incentives are
highest for the federal government because the scale of these agencies is so large that
their cost savings dwarf what even large enterprises will see.

Even though, historically, government hasn’t been a leader in use of IT technology,
this time is different. Enterprises will find themselves in the unusual position of trying
to catch up to the government.

9.2.10 SaaS use of basic web standards

SaaS will grow and stay current by using the basic web standards that will themselves continue to
advance. SaaS, as exemplified by Facebook, Gmail, Flickr, Salesforce.com, and hundreds

Ten predictions about how application development will evolve 205

of other applications, is the cloud paradigm most strongly in play. Gartner estimates
the size of the SaaS market will be $16 billion by 2013. IDC continues to report 40%
annual growth rate for the category. More than 76% of U.S. corporations use at least
one SaaS application. Some 45% of companies spend at least 25% of their IT budgets
on SaaS. These companies are already shifting their users to the cloud even if they’re
not yet fully ready to shift their own infrastructure to the cloud.

SaaS is easy for corporations to adopt from a technology standpoint. The point
of SaaS is that all you need to have to use an application is a browser. It needs no
additional standards: SaaS exists because of and will continue to use the same standards
on which all basic websites and web applications are built. As HTML 5 becomes broadly
supported in browsers, SaaS applications will take advantage of its features, bringing a
more interactive experience to users and further removing any complaints users may
have when transitioning from fat clients to SaaS applications.

9.3 Ten predictions about how application development will evolve
This section focuses on how application development evolves. In short form, the list of
10 predictions about application development evolution is as follows:

■ Application frameworks will have a significant role in the growth and evolution
of cloud computing.

■ The second or middle (application logic) tier and the third tier (storage) will
more often run in the cloud.

■ Rapid evolution will occur for different storage mechanisms, particularly for
unstructured data and database scaling strategies such as sharding.

■ Security services will include more and stronger options to protect sensitive data.
■ Over the next decade, companies with valuable data repositories will offer

higher-level services hosted on existing clouds, each with a unique API.
■ Adoption and growth of mashups will fuel the further growth of the cloud.
■ What most call PaaS (for example, Google’s App Engine) and its natural

extension—Framework as a Service—will become the predominant way applica-
tions are constructed in 10 years.

■ More powerful development tools will quickly evolve to make it easy to build
mashups.

■ Developers outside the U.S. and Europe will leapfrog the West because they’re
not encumbered by legacy IT infrastructure.

■ The cost of creating an application will become so low that it will cease to be a
barrier.

Let’s begin with the first prediction about application frameworks.

9.3.1 Role of application frameworks

Application frameworks will have a significant role in the growth and evolution of cloud comput-
ing. In addition to the base platform we’ve been discussing, a large and growing list

206 CHAPTER 9 Cloud 9: the future of the cloud

of open-source application frameworks are coming online. These application frame-
works are used broadly for building a wide variety of web applications. As such, they’ll
have a significant role in the growth and evolution of cloud computing as well. You
can see a few of the more common and heavily used frameworks for building web (and
therefore including cloud-based) applications in table 9.1.

Application frameworks are always an important accelerator for development
because they provide developers with much of the foundational material of an
application. In cloud-based applications, this will be more important than ever.

Table 9.1 Popular application frameworks

Framework Characteristics

Ruby on Rails Ruby is a dynamic, reflective, general-purpose, object-oriented programming
language that combines syntax inspired by Perl with Smalltalk-like features.
Ruby originated in Japan during the mid-1990s. It’s based on Perl, Smalltalk,
Eiffel, Ada, and Lisp.

Apache Struts Apache Struts is an open-source web application framework for developing Java
EE web applications. It uses and extends the Java Servlet API to encourage
developers to adopt a model-view-controller (MVC) architecture. It was donated
to the Apache Foundation in 2000. Formerly known as Jakarta Struts, it became
a top-level Apache project in 2005.

Adobe Flex Adobe Flex is a software development kit released by Adobe Systems for the
development and deployment of cross-platform rich internet applications based
on the Adobe Flash platform. You can write Flex applications using Adobe Flex
Builder or by using the freely available Flex compiler from Adobe. It was open
sourced in 2008.

PHP PHP stands for PHP: Hypertext Preprocessor (like GNU, the name is recursive).
It’s a widely used, general-purpose scripting language originally designed for
web development to produce dynamic web pages. For this purpose, PHP code is
embedded into the HTML source document and interpreted by a web server with
a PHP processor module that generates the web page document.

Python Python is a general-purpose high-level programming language. Its design
philosophy emphasizes code readability. Python claims to “[combine]
remarkable power with very clear syntax,” and its standard library is large and
comprehensive. Python supports multiple programming paradigms (primarily
object-oriented, imperative, and functional) and features a fully dynamic type
system and automatic memory management, similar to that of Perl, Ruby,
Scheme, and Tcl. Python is often used as a scripting language. It’s the basis for
Google’s AppEngine PaaS cloud offering.

9.3.2 Second and third tiers running in the cloud

The second or middle (application logic) tier and the third tier (storage) will more often run in the
cloud. A web application is an application accessed via a web browser over a network, such
as the internet or an intranet. The term may also mean a computer software applica-
tion hosted in a browser-controlled environment (such as a Java applet) or coded in
a browser-supported language (such as JavaScript, combined with a browser-rendered

Ten predictions about how application development will evolve 207

markup language, such as HTML) and reliant on a common web browser to render
the application executable.

As you read in the earlier section about browsers, it was Netscape’s 1995 introduction
of JavaScript that allowed programmers to add dynamic elements to the user interface
that ran on the client side. Earlier, you had to send all the data to the server for
processing, and the results were delivered through static HTML pages sent back to the
client. You probably remember (and may occasionally run across) these kinds of pages.
They now look downright archaic.

Flash was equally transformative for rich web applications. Macromedia (now part
of Adobe) introduced Flash in 1996. Now, applications full of direct-manipulation
features, drag-and-drop, floating menus, and all the other concepts that fat clients
running on our PCs have had for years, are possible in web applications.

Multitier (or N-tier) applications have been the standard for many years and will
be for many more to come, because this type of application architecture provides a
loosely coupled model for developers to create flexible and reusable applications. By
breaking an application into tiers, developers only have to modify or add a specific
layer, instead of rewriting the entire application over. The change brought by the
cloud is in the operation of those different tiers. Instead of a heavyweight PC operating
system running a windowing system, the first (presentation) tier is a web browser. The
second or middle (application logic) tier is an engine using some dynamic web content
technology (such as ASP, ASP.NET, CGI, ColdFusion , JSP/Java, PHP, Perl, Python,
Ruby on Rails, or Struts2), and a database is the third tier (storage). The second or
third tiers, as you may have guessed, will more often run in the cloud.

Web applications are by definition multitier. More powerful enterprise web applications
typically have powerful application and storage tiers, and those will run in the cloud.

9.3.3 Rapid evolution for different storage mechanisms

Rapid evolution will occur for different storage mechanisms, particularly for unstructured data
and database-scaling strategies, such as sharding. At an accelerating pace, new services
will be rolled out by both IaaS and the PaaS vendors. Amazon rolled out EBS , Virtual
Private Cloud , a hosted MySQL service, and additions to its existing services within a
period of 12 months.

Areas that will see rapid evolution of services will be around different storage
mechanisms, particularly for unstructured data, scaling strategies, and support for
sharding. You’ll also see a large number of services built on top of the IaaS systems such
as we have already seen with Ruby on Rails, Hadoop, and many data access services.

9.3.4 Stronger options to protect sensitive data

Security services will include more and stronger options to protect sensitive data. All of the ma-
jor cloud providers will continue to push physical security to the levels of Fort Knox.
They’ll have enough mantraps, razor wire, multifactor authentication, biometric scan-
ners, and surveillance to make the spy agencies jealous. Network and infrastructure

208 CHAPTER 9 Cloud 9: the future of the cloud

security, already as strong as in any financial services enterprise, will grow and expand
such that they continuously scan every port; signature-based intrusion detection will
instantly detect any known attacks; anomaly detection will detect zero-day attacks ; and
excess bandwidth that can never be accessed by applications will thwart DDoS attacks .

Providers will hash and encrypt all files stored in the cloud and keep the data encrypted
until the moment it’s processed in a CPU. So-called Chinese walls will keep data from
one cloud customer cordoned off from all other customers. All users will have to use
multifactor authentication for access control and will have good key management to
ensure the authentication and encryption of all APIs. All data in flight will be encrypted at
all times. The only time the data will be decrypted is when it’s in the CPU being processed.
Even the cloud provider won’t be able to decrypt such data, much less a hacker.

Hardware , hypervisors , and operating systems will move to a system of deep security
at all levels where it will become virtually impossible for things such as buffer-overflow
attacks to gain control of a CPU. Finally, because of the large number of virtual
machines available to all cloud users at all times, it will become routine to use some of
those machines to constantly do penetration and vulnerability testing both at the cloud
user’s level as well as at the cloud-provider-management level (the cloud backplane).

Security in the cloud—a hot topic now—is getting such scrutiny that in only a few
years, it will set the standard for securing information. All data will be private and
secure except at the precise moment when the CPU operates on it, making clouds the
most secure places to operate.

9.3.5 Higher-level services with unique APIs

Over the next decade, companies with valuable data repositories will offer higher-level services
hosted on existing clouds, each with a unique API. What will be interesting over the next
decade will be the higher-level services that companies with valuable data repositories
will be able to offer on top of existing clouds. Each will have a unique API. Think about
a credit bureau turned into a cloud service. Drivers license databases, a variety of data-
bases to authenticate consumer identity, real estate, mapping, and product databases
as well as many other types of data will soon have powerful APIs to a cloud-hosted
service. All these valuable data repositories will be easily accessible to developers and
consumers. This model will also work extremely well for compute-intensive tasks, such
as mapping, transformations, video and photo processing, and a myriad of scientific
computations. All this will make it immensely lucrative for the data owner.

When you host a capability in the cloud with an API to access it, you can turn it into
a consumable component to be used in a new type of application. That will change the
way all of us think about applications. This approach is called a mashup or a composite
application.

9.3.6 Adoption and growth of mashups

Adoption and growth of mashups will increase the growth of the cloud. In web development,
a mashup is a web page or application that combines data or functionality from two
or more external sources to create a new service. The term mashup implies easy, fast

Ten predictions about how application development will evolve 209

integration, frequently using open APIs and data sources to produce results that
weren’t the original reason for producing the raw source data.

Mashups are possible only because of the cloud. Their rapid adoption and growth will
fuel the further growth of the cloud, and the reverse is true as well. Yet again, we’ll see
a self-reinforcing Krebs-like cycle where cloud enables mashups, and mashups promote
much more use of the cloud. The clouds enabled mashups, but the ease of creating new
applications through mashups will in turn make cloud growth literally explode.

An example of a mashup is the use of cartographic data to add location information
to real estate data. It creates a new and distinct web API not originally provided by either
source. Google Maps are probably the most common component used in mashups (see
figure 9.8). You’ll see Google Maps with all kinds of different data merged to create a
simple but useful kind of mashup.

Similar to the concept of a portal ,1 mashups involve content aggregation loosely
defined to be based on Web 2.0 (think social networks) types of techniques. A lot of
people will wake up and realize they’re sitting on extremely desirable data that they
never before had a way to monetize. They’ll host it in the cloud and provide an API to
it, and suddenly the data will be accessible to the world of mashups.

Figure 9.8 A mashup using Google Maps combined with data about collapsed
civilizations. Google Maps merge together all kinds of data, creating a simple but
useful kind of mashup. Source: University of Florida.

1 See Portlets in Action by Ashish Sharin (Manning, estimated print date December 2010).

210 CHAPTER 9 Cloud 9: the future of the cloud

Mashups don’t yet have a formal standard per se. Typically, they’re based on REST
(defined in chapter 2) architectural principles for create, read, update, and delete op-
erations on some repository. The base standards on which mashups are based include
XML, which is interchanged as REST or web services. Groups have already formed
to fashion mashup standards. The Open Mashup Alliance (OMA) has proposed the
Enterprise Mashup Markup Language (EMML). A proposed query language called
MashQL is for queries against metadata models.

Analysts such as Business Insights are predicting mashup usage to grow an order of
magnitude in the next five years. Just as the cloud represents a platform transformation
that will cause fundamental changes in the building of IT infrastructure, mashups
represent a radical change in the how and who of application construction.

9.3.7 PaaS and FaaS as predominant tools

PaaS (for example, Google’s AppEngine) and its natural extension—Framework as a Service—
will become the predominant way of constructing applications in 10 years. FaaS, which both
AppEngine and Salesforce.com’s Force.com are evolving into, is PaaS with the addi-
tion of powerful mashup construction tools, APIs, licensing, packaging, billing and
ancillary tools, and services aimed at building mashups.

The ecosystem that will evolve to support mashups will include a mashup component
exchange . This will be a place on the internet accessible as a SaaS application that
will allow developers to find components similar to iPhone applications today. These
components won’t be standalone applications but instead will be components that can
be mashed together with other components to create mashups. The exchange will
not only allow the components to be found but will also provide a means to license
components and wrap them with a billing layer such that providers have a way to monetize
their use. Sample code, tests, and documentation will be included with components as
well. It will be an interactive “TTL Data Book” for mashup construction much the way
Texas Instruments produced the “bible” for hardware design for decades.

In some ways, we’re seeing software follow a generation behind the way hardware
construction evolved. Virtually all but the highest-volume parts are constructed out of
standard cell libraries. Following this analogy, you can think of most hardware as being
mashups of a collection of standard cells.

9.3.8 Evolution of development tools to build mashups

More powerful development tools will quickly evolve to make it easy to build mashups. In addition
to and in support of a mashup component exchange, more powerful development tools
will quickly evolve to make it easy to build mashups. In particular, because of so much
pent-up demand to have end users build their own applications, a class of tools will
evolve that allows this. An old-fashioned power programmer will create a tool tuned to a
specific application domain. This domain might be some aspect of a business process, or
it might be for social scheduling or anything in between. Then, a non-programmer—an
end user—with initiative will effectively use such a tool. They’ll quickly use the set of
components laid down by the power programmer relative to the domain into which the

Ten predictions about how application development will evolve 211

user wants to insert a new application to create the application they and their friends or
associates want to use.

Because they’re well-constructed application components, and because the tool to
create a final application will be careful in what it allows users to do, the resulting
application will be robust. It will run in the cloud as its piece parts do. This will allow
the most exposure to the tools, the applications, and the components used in those
applications to use the network effect to virally spread what is good and what isn’t.
Thousands of simple applications will be created this way. We’re seeing a preview of
this with iPhone and Facebook applications. But what is changing is the nature of the
individual creating the application.

It’s informative to see the high-level categorization of the more than 2,000
mashup components currently listed at ProgrammableWeb.com . Table 9.2 shows the
categorization of what ProgrammableWeb calls Mashup API s. In parentheses with each
category is the number of APIs supporting that category, which gives an indication of
the richness of each area listed.

With this many categories, and more being added all the time, combined with power-
ful but simple-to-use tools highly targeted at specific domains, the concept of devel-
oping an application has radically changed forever. We’re not saying that you won’t
need powerful business applications. But in terms of the sheer number of applications
created, the tide will turn toward individuals creating the applications they need and
want for their little groups.

Table 9.2 Categorization of the Mashup API categories listed on ProgrammableWeb.com as of this
writing, with the corresponding number of supporting APIs

Advertising (18) Games (26) Reference (78) Answers (5)

Government (43) Search (56) Blog Search (8) Internet (120)

Security (26) Blogging (23) Job Search (16) Shipping (8)

Bookmarks (17) Mapping (102) Shopping (60) Calendar (5)

Media Management (9) Social (104) Chat (13) Medical (14)

Sports (13) Database (19) Messaging (61) Storage (19)

Dictionary (1) Music (68) Tagging (9) Email (35)

News (22) Telephony (54) Enterprise (50) Office (22)

Tools (48) Events (17) Other (101) Travel (33)

Fax (3) Payments (14) Utilities (29) Feeds (14)

Photos (49) Videos (65) File Sharing (10) PIM (10)

Weather (9) Financial (87) Project Management (20) Widgets (17)

Food (6) Real Estate (16) Wiki (9) Games (26)

212 CHAPTER 9 Cloud 9: the future of the cloud

9.3.9 Success of non-Western developers

Developers outside the U.S. and Europe will leapfrog the West because they’re not encumbered
by legacy IT infrastructure. They’ll build and sell mashup components and the tools to
develop them, or they’ll build more sophisticated applications that run in the cloud.
And they can do so much more cheaply because they don’t have to buy expensive IT
infrastructure.

9.3.10 Development cost no longer a barrier

The cost of creating an application will become so low that it will cease to be a barrier. Many
forces will act to make the pool of application developers expand greatly. You won’t
need to purchase equipment. You won’t need to hire computer scientists. Even the
nature of outsourced development will change.

Today, when you need information, you search for it on Google. What you see is
a web page or a document of some sort. But what if that page was active and had the
ability to take inputs and produce outputs? Some of those outputs might be visible
on your mobile computing device. You’d be able to take the inputs from one such
object and connect them to the outputs of another. And you’d be able to customize
the behavior of the overall collection of communicating objects (will it still be called
a mashup?). Some or all of the objects may charge for their usage. A mashup object
will be able to charge you directly by directing one of its inputs to your bank account
object, itself a mashup component with inputs and outputs of its own.

You’ll be able to do all your computing in the cloud, similar to how the power
company and the phone company provide electricity and communications today.
Everything will be objects strung together the way we learned to do with the Unix pipe
command in the early 1980s.

Today’s developers will become the creators of flexible and sophisticated mashup
components, but the rest of the world will be the application creators who put these
objects together into new and interesting ways that suit their needs. Society will change
as a result of everyone constructing applications to suit their needs. This is a bold
vision, and it’s only possible because the cloud is providing the backbone and the
mobile revolution; the social aspects of Web 2.0 provide the other component of a
perfect storm to finally bring us computing as a utility.

9.4 Summary
This last section of the final chapter offers a brief summary of the entire book.

9.4.1 Five main principles of cloud computing

In chapter 1, we summarized the five main principles of cloud computing as a pool of
off-premises computing resources available for use when needed, built from virtualized
computing resources to maximize hardware utilization, scalable elastically up or down
according to need, and controlled through the automated creation of new virtual ma-
chines or deletion of existing ones, where all resource usage is billed only as used.

 Summary 213

9.4.2 Significant benefits of adopting the cloud

The most significant benefit of cloud adoption is economic viability: converting CAPEX
to OPEX means less up-front cash outlay as well as finer-grained control over dollars
spent for IT. This has a real impact, particularly on smaller companies, but will increas-
ingly affect the bottom lines of even large enterprises.

Agility is another potential benefit. Almost zero time for procurement means faster time
to working systems where development occurs and, therefore, faster time to market.

These two benefits combine to make companies more efficient and more
competitive. Another benefit is, somewhat surprisingly, increased security. This
counterintuitive observation is because cloud providers specialize in and are
dedicated to maintaining state-of-the-art security, and this will make them better at
it than everyone else.

9.4.3 Reaching the cloud through an evolutionary process

Paradigm shifts in computing come in generations and proceed to transform IT:
client-server replaced mainframe time-sharing, and from there we went to Grid and
SaaS (with its variety of early names). Meanwhile, data centers evolved equally fast.
Costs decreased, and scale increased. We got cheaper but faster computing, cheaper
but denser storage, faster networks, and commodity hardware, all of which lowered
costs for data centers. This enabled a dramatic increase in the scale of data centers,
which now cost over $500 million to build.

On the software side, software componentization went through several generations,
each with a different set of terms, such as distributed computing, object orientation,
components, software services, and service-oriented architectures. Virtualization was
a vital step in cloud evolution because it solved the utilization problem plaguing large
data centers.

The internet was the original cloud metaphor. In the early days of describing
an architecture that interacted with the internet, a cloud was used to represent the
internet.

The cloud can’t be classified under a single head; and to avoid comparing apples to
oranges, classifying the different types of clouds is important.

9.4.4 Cloud classifications from IaaS to SaaS

Chapter 2 took on the task of breaking down all the cloud types and labeling them.
IaaS is Infrastructure as a Service, where providers sell virtualized servers with a full
application stack by the hour; examples include Amazon EC2, Terremark, and part of
Microsoft Azure.

PaaS is Platform as a Service: a programming interface with a powerful operating
environment replaces the bare-bones but infinitely controllable virtual servers of IaaS.
Automatic scaling is one benefit of this approach. Loss of control and customization in
addition to vendor lock-in are the price. Examples include Google App Engine, Ruby
on Rails running on Amazon, and part of Microsoft Azure.

214 CHAPTER 9 Cloud 9: the future of the cloud

FaaS is Framework as a Service, which is typically offered as a programming
framework adjunct to a SaaS product you already use.

You can program and access the data you already own through use of an SaaS
application, as in Force.com. SaaS is Software as a Service, and it’s the oldest incarnation
of the cloud. You’ll find hundreds if not thousands of SaaS applications, including
Salesforce.com, Google Docs, Intuit and many more.

Finally, there is some talk of DaaS, or Datacenter as a Service, which is a euphemism
for private clouds.

9.4.5 Technological underpinnings

When you understand what a cloud is, where it came from, and its various flavors, the
next most important thing to understand is how it works. It starts with a powerful, cost-
efficient data center. Cloud data centers are becoming large so they can drive down
costs through efficiency. They expand that efficiency manifold through virtualization.

Users need to access the virtual servers they agree to pay for; the cloud needs an
API to provide that control. Data such as applications needs to be stored close to the
computing environment; clouds provide persistent storage. Many applications need
structured data while running; clouds also provide various flavors of databases. Finally,
we need a way to have an application running in the cloud scale up (add more servers
and storage) and scale back down as demand ebbs and flows. We can render this
elasticity either automatically (as in PaaS) or manually (as in IaaS).

9.4.6 Paying only for what you use

In chapter 3, we examined the business case for cloud computing. What all the cloud
classes have in common is a completely different economic model than purchased soft-
ware or hardware. The cloud uses a pure rental model like a managed service, but it’s
virtual capacity, not physical. No matter what your need, you only pay for what you use.
Among other things, this makes expansion for development, testing, or scale doable.

The cloud makes great business sense right away when you have a short-term
need, an application with volatile scale, or nonstrategic applications. But it’s not a
panacea, and it may not make sense for legacy systems, real-time applications, or highly
confidential data.

The world has changed for startups, and the zero-capital startup is now commonplace.
Medium-sized businesses are heavy cloud users for corporate websites, backups and file
storage, and new product development. And a few bolder enterprises find the cloud
to be a solution for heavy compute tasks, deadline-driven needs, and their online web
presence.

9.4.7 Overblown security concerns

In chapter 4, we explored the number-one issue slowing adoption: security. Cloud
providers are the operators of the largest data centers and are experts at security. They
employ state-of-the-art physical security, they all get SAS 70 certification, and they use

 Summary 215

strong access-control mechanisms, including issuing customers public keys for access
and encryption.

Their network and data security is best-of-breed as well. This includes operating
system security, network security, control over comingling, and data-storage security.
For those that have significant excess capacity or have uncompromising data security
issues, there is the private cloud model.

9.4.8 Private clouds as a temporary phenomenon

When you drop the off-premises and metered-billing components of the cloud com-
puting definition, you end up with private clouds that are also called internal or
corporate clouds. But be careful, because this may leave you with resource scarcity,
and you may not be able to participate in the economies of scale that the huge data
centers enjoy.

You have many options when going the build-your-own private cloud route, including
open-source vendors Eucalyptus and Open Nebula. For-profit vendors VMware and
Enomaly will build it for you. Savvis and SunGard will host it in their facility for you but
cordon off what is yours. Finally, a hybrid option called a virtual private cloud (VPC)
tries to offer the best of both worlds. A VPC is a secure and seamless bridge between
an organization’s existing IT infrastructure and a provider’s public cloud. This allows a
corporation to expand certain applications into the cloud, to elastically scale a website
as it gains popularity, and to set up a disaster-recovery scenario.

9.4.9 Designing for scale and sharding

Chapter 5 focused on designing applications that fully utilize the potential scale on the
internet as well as applications that suddenly exceed local capacity and those that need
sudden expanding storage. The main issue with applications that need to handle scale
is that database bottlenecks hinder expansion. The solution is a database-partitioning
scheme called sharding. Sharding is a decomposition of a database into multiple smaller
units (called shards) that can handle requests individually.

When you want the best of both worlds—an internal data center that can expand out
to the cloud as needed—you can use another type of scaling called cloudbursting; it allows
the data center not to be overprovisioned and still handle rapid increases in demand.
Scale can also apply to storage, and cloud storage with its pay-for-what-you-use model is
an ideal way to handle storage capacity that needs to expand and contract over time.

9.4.10 Designing for reliability and MapReduce

Chapter 6 shifted to the issue of reliability. Distributed computing and loose coupling
can lead to more reliable systems because they avoid single points of failure. A type of
distributed computing used heavily by businesses, which was a precursor to the cloud, is
SOA. Much of the cloud is built out of and uses SOA as its fundamental underpinning.

As the cloud providers discovered the economic benefits of building large data
centers out of commodity hardware, they also increased the challenges to reliability.

216 CHAPTER 9 Cloud 9: the future of the cloud

The solution is redundancy. The developer who expects an application to expand to
many servers has to plan for reliability. One tool for doing so is MapReduce. As the
name implies, the keys are the map and reduce functions. A map takes as input a
function and a sequence of values. It then applies the function to each value in the
sequence. A reduce combines all the elements of a sequence using a binary operation.
This achieves reliability by parceling out operations on the data set to each node in a
network. Each node reports back periodically with results and status updates. Obviously,
a failed node will remain silent. That node’s master notes the dead worker node and
sends its work out again.

Hadoop is an open-source MapReduce. It’s available on Amazon AWS and is used
by Amazon A9, Adobe, Baidu, Facebook, Hulu, IBM, Netseer, the New York Times,
Rackspace, and Yahoo!.

9.4.11 Better testing, deployment, and operations in the cloud

Chapter 7 got pragmatic and delved into how you can use the cloud in testing, deploy-
ment, and operations. In traditional data centers, development, test, and staging ma-
chines drive overprovisioning and low server utilization. A single application may have
quadruple the number of servers it needs in production. The cloud is a natural way to
avoid these costs and waste.

Additionally, the cloud speeds up test automation and even manual testing. You can
use it to employ parallelism in testing. Load testing takes advantage of the commodity
flavor of virtual servers. Even browser-based load testing becomes simpler due to easy
access to limitless server resources.

Most important, the cloud can fundamentally change application development. By
using both the cloud and the crowd, we get close to a model of continuous deployment.
In this model, the time between changes to the software by developers and end-to-end
quality assurance shrinks to the point that it isn’t unreasonable to push new releases
every day while maintaining complete confidence in the quality of those releases.

9.4.12 Choosing a cloud vendor

In chapter 8, we discussed practical considerations, such as how to choose a cloud ven-
dor. Choosing a cloud vendor is important because lock-in is a real danger for a few
years. You need to consider business viability: financial, operational, and contractual.
On the technical side, you need to assess availability and performance, elasticity and
scale, security and compliance, and interoperability and compatibility.

9.4.13 Monitoring public clouds and SLAs

“Trust but verify” applies not only to nuclear disarmament but also to cloud SLAs.
You’ll need the necessary data to measure the cloud provider’s compliance to the com-
mitted service levels. A practical strategy for maintaining good performance starts by
assessing availability and performance as experienced by end users through continu-
ous monitoring of the deployed application.

 Summary 217

9.4.14 The future of cloud computing

The cloud will morph into utility computing: normal companies will no more have
their own data centers than they would generate their own electricity. This won’t hap-
pen overnight but will happen within the next 20 years.

Surprisingly, in the U.S., government will be a more aggressive adopter of cloud
computing than enterprises because of the huge cost savings. And not surprisingly, when
such a dramatic technological or social transformation takes place, the groups with less
legacy build-out can move faster, and this will enable the non-Western world countries
to leapfrog as they use the cloud to advance their participation in IT markets.

Alongside this transformation will be the mobile device revolution that we’re seeing
the beginning of now. One transformation is helping the other move even faster. The
cloud is a must-have when the end-user device is small, is mobile, and has limited
capabilities. But these devices generate and consume vast quantities of data and
computing, driving the need for the cloud. Ultimately, we’ll see computing devices
built into everyday devices and almost every surface. We’ll take them for granted. For
that to happen, they’ll need to be interconnected through—well, a giant cloud.

218

appendix:
Information security refresher

In this appendix, we’ll review the basics of information security that will help you
understand how security in the cloud works. We’ll cover six topics:

 Secret communications■

 Keys■

 Shared-key cryptography■

 Public-key cryptography■

 XML Signature■

 XML Encryption■

These topics are relevant because cloud providers, having based their services on web
services, all use these security technologies in their everyday operations. As you’ll see,
keys are issued the moment you sign up for cloud services. The APIs used to create
and control machine instances all use one or more of these means to keep your opera-
tions secret and secure. Let’s begin with the concept of secret communications.

Secret communications
Keeping communication secret is the heart of security. The science of keeping mes-
sages secret is called cryptography . You may think of cryptography as being used to
scramble and unscramble messages to keep prying eyes from seeing your secrets.
But that is never enough: you also need to know who is sending and receiving the
message and whether they’re authorized to do so.

Binding a known identity to a message you can see, interpret, and trust across a
network also uses cryptography. That identity, asserting itself, must be authenticated
by a trusted agent for the binding to be valid. That agent may be the cloud provider

 Keys 219

or a higher authority that both you and the cloud provider agree to trust. After you
know the identity, authorization allows the communicating parties to specify what the
individual with that identity is allowed to do.

When someone receives a secret message, they need to know that nothing in the
message has been changed in any way since it was published—an attribute called
integrity . When cryptography successfully keeps a message secret, it has satisfied the
requirement for confidentiality . At times, you may want to know that someone who
received confidential information can’t deny that they received it, an important
security concept called nonrepudiation .

Note these descriptions are brief; it takes an entire book to cover these concepts in
depth.1 But you need to know about these concepts to begin to appreciate information
security and how it applies to cloud computing. And the key to all of cryptography is
the keys.

 Keys
A key is a set of bits that acts as an input parameter to a crypto-algorithm . Think of the
crypto-algorithm as the lock on your front door. That lock is standard, as is the door. Lots
of other people have doors and locks that are outwardly identical. But inside the lock are
some unique (or almost unique) settings of tumblers that exactly match individual keys.

1 See Applied Cryptography by Bruce Schneier (Wiley, 1996).
2 This wasn’t the case earlier. Even post World War II, it was thought that the algorithms needed to be top

secret. But after those algorithms fell to hackers one after the other, it was determined that the openness
policy worked much better.

Uniqueness of keys
Keys used in cryptography are “almost unique” because, like door locks, there
is no absolute certainty that two keys are unique. But the chances of two keys
being the same are infi nitesimally small, as is the chance of your key opening a
neighbor’s lock.

Algorithms for encryption and decryption do not need to be and normally are not
kept secret. It is the key that is kept secret . It is an important fundamental principle of
cryptography that the algorithms be public, standard, widely distributed, and carefully
scrutinized. This principle ensures that all the world’s cryptographers fully shake out
the algorithms for any security flaws.2

The key is the variable that makes the algorithm result unique and secret. For some
crypto-algorithms, the key may be a random number. For others, such as public-key
algorithms, you (or rather, an application on your computer) must carefully choose
matched keys—a complex, time-consuming mathematical operation by itself. The
key space needs to be large. A huge number of possible keys helps prevent guessing
attacks. Different algorithms require different key lengths for good security. Most keys
today are typically 256 bits or larger.

220 APPENDIX Information security refresher

Shared key cryptography
Shared-key cryptography uses the same key to encrypt and decrypt a message. This re-
quires that both communicating parties share the same key and, vitally important,
keep it secret from the rest of the world. In the shared-key cryptography process, the
sender, using the shared secret key, encrypts plaintext into ciphertext . Then, on the
receiving end, the recipient decrypts the ciphertext using the same (shared) secret key
to read the plaintext originally sent. See figure A.1.

As long as you keep the shared key secret, use a reasonably long key, and employ an
approved modern crypto-algorithm, there is no way anyone can decipher the ciphertext
and get at the data in the message. Your data is safe from prying eyes and attackers.

The advantage of shared-key encryption/decryption is that the algorithms are fast
and can operate on arbitrarily sized messages. The disadvantage is that this approach
creates great difficulties managing a shared key that must be kept secret across a
network between message senders and recipients. Still, this is a form of cryptography
you run into frequently, because it’s the basis of Secure Socket Layer (SSL) security and
is the foundation for XML Encryption, which is used heavily in web services and cloud
computing security. The next type of cryptography solves the problem of keeping a
single shared key secret.

Public-key cryptography
Public-key cryptography uses a key pair called a private and public key. Because the keys are
different, this type of encryption is called asymmetric . You use one from the pair of

Shared (secret) key

Encrypt

Ciphertext
Plaintext Plaintext

Decrypt

Figure A.1 The shared-key (symmetric) encryption process. Plaintext is encrypted by the sender
using the shared (secret) key with a symmetric cryptography algorithm, turning it into ciphertext.
The recipient, using the same key and the inverse decryption algorithm, turns the ciphertext back
into the original plaintext.

 Public-key cryptography 221

keys to encrypt the data; only the other half of the pair can decrypt the data. Of vital
importance is that you can’t share the private half of the key pair. Only the public key
can be shared; in fact, it can be widely distributed to others. It is an absolute tenet of
public-key cryptography that each subject keeps their private key confidential, never
sharing it with anyone.

You can choose to use either key to encrypt, but only the matching key from the pair
will decrypt. In figure A.2, Alice uses the recipient’s public key to encrypt her plaintext
message into ciphertext. Bob uses his private key to decrypt the ciphertext back into
the original plaintext message.

If you want to make sure only the recipient can read your message, use that person’s
public key to encrypt, and then they and only they using their private key can decrypt.
This is encryption to send a secret message to only the intended recipient. If you want
everyone who gets your message to know it came from you and only you, use your
private key to encrypt; then, the recipients can use your public key to decrypt. This is
using a digital signature to prove that you and only you could have sent the message.

Whichever way asymmetric encryption is used, it’s limited to relatively small
messages. A frequent pattern is to use asymmetric encryption to encrypt and exchange
a shared key but then to use shared-key encryption for large messages that are being
exchanged. The ubiquitous and highly successful SSL technology uses this pattern
for virtually all web sites doing secure transactions: it uses asymmetric encryption for
the initial authentication and to exchange a shared secret key; then, using the shared
key, all the data transmitted across the SSL channel is encrypted using a symmetric
algorithm.

Encrypt

CiphertextPlaintext Plaintext

Bob’s
public key

Bob

Alice

Bob’s
private key

Decrypt

Figure A.2 The public-key (asymmetric) encryption process. Alice uses Bob’s public key to encrypt
plaintext into ciphertext using an asymmetric (public-key cryptography) algorithm. Bob uses his
private key from the same key pair to decrypt the ciphertext into the original plaintext. This
message is completely unreadable by anyone without Bob’s private key.

222 APPENDIX Information security refresher

For web services and cloud computing (which is based on and uses web services),
digital signatures and encryption are typically applied to XML streams of data (or
used inside SOAP envelopes). The standards formed for this purpose are called, not
surprisingly, XML Signature and XML Encryption.

XML Signature
XML Signature is a foundational technology for web service s security in general and
its use in cloud computing security. XML Signature is built on top of mature digital
signature technology. The purpose of digital signatures is to provide a mechanism for
message integrity (no one has changed the message since it was created) and nonre-
pudiation (you can’t refute this message exchange). XML Signature was created to
encode digital signature s into XML.

Congress approved electronic signatures in June 2000. This approval gave legitimacy
to electronic signatures. It prevents the contesting of a signed contract solely because
it is signed electronically. This event set the stage for digital signature standards.
XML Signature came out of an IETF /W3C working group called XML-DSig that was
established to create a highly extensible signature syntax tightly integrated with existing
XML technologies, but one that could also handle composite documents from diverse
application domains as well.

XML Encryption
Similar to XML Signature, XML Encryption is built on top of mature cryptographic
technology—in this case, shared-key encryption technology. Core requirements for
XML Encryption are that it must be able to encrypt an arbitrarily sized XML message,
and it must do so efficiently. Those two factors led its creators to choose shared-key
(symmetric) encryption as the foundation for XML Encryption (remember, shared-
key encryption can handle arbitrary-sized messages, whereas asymmetric key encryp-
tion is limited to small messages).

Encryption provides for message confidentiality (the message is secret from all but
the intended recipient). You need XML Encryption over and above transport-level
encryption, such as SSL, because you want to control message-level security at the
application level and not leave it to the underlying infrastructure (which you don’t
control) to provide it. With XML Encryption, you can maintain confidentiality of
messages in the face of the message taking multiple hops on its way to its destination,
which can compromise end-to-end security. At SSL termination points, you lose
control of the security of your data. This is common when you use shared services. You
also need confidentiality when storing the XML message, even after it reaches its final
destination. This requirement is called persistent confidentiality .

Like XML Signature, XML Encryption applies standard algorithms to data and
then stores that encrypted result in XML. And as with XML Signature, you can apply
encryption selectively to portions of a document.

 XML Encryption 223

XML Encryption builds on and shares several concepts with XML Signature. Like
XML Signature, it’s a W3C standard. It’s a vitally important second foundation to web
services security because it’s the way to achieve confidentiality in XML messages used
to control and manage cloud-based services.

With that refresher on information security as a backdrop, you’re well equipped to
fully understand the discussions of cloud security in chapter 4.

224

A

Abelson, Harold 141
abstraction layer 111
Accenture 88
access control 76–80

billing validation 76
identity verification 77
key 78
key pair 79–80
sign-in credentials 77
X.509 certificates 78–79

ACID 32
ACL 83
Adobe

Flex, characteristics 206
use of Hadoop 146

agile development, and Ruby on Rails 43
agility, benefits of cloud computing 7
AICPA 76

SAS 70 171
Ajax

and load testing 164
history 191

Akamai 39, 129, 175
AlertSite 185
Alexa 129
Amazon

and cloudbursting 102
and Open Cloud Manifesto 203
APIs 28, 202–203

RESTful API 202
SOAP API 202

as content provider 129
auto scaling 28

AWS cloud, and Eli Lilly 70
AWS Start-Up Challenge 66
cloud services 38–39
cloud storage 125
CloudFront 39, 70
cost to cloud customers 96
data center

build-out 12
Dalles, OR 22
mega 20
security 75

EBS 28, 58, 207
e-commerce platform 2
Elastic Compute Cloud. See EC2
elastic load balancing 28
Large Instance option 57
limit on 500 XL instances 86
pricing 128
public cloud offering 2
S3 38, 80
shared-nothing partitioning 105
SimpleDB 39, 202
SQS 39, 202
startups as customers 195
use of Hadoop 146
virtual VPN 58

Amazon VPC 89, 92
security solution 94

AMD
and Open Cloud Manifesto 203
and parallelization 157

AMI 27
and cloudbursting 119
connecting to 28
paid 28

index

INDEX 225

private 28
public 28
shared 28
standard flow 28

AOL 10
scaling issues 36

Apache Struts, characteristics 206
Apex 44
API endpoint 82–83
App Engine 42–43

and cloudbursting 121
and Force.com 44
automatic elasticity 42
datastore 43
development environment 42–43
evaluating 47
Java runtime environment 43
lock-in 47
MegaStore 42
pricing 43
programming languages 42
Python runtime environment 43
sandbox 42

AppEngine 16
evolution into FaaS 210
operational parameters 182

AppExchange 44
Appirio 88
Appistry 88–89

and Sprint 95
Apple

and Browser Wars 165
data center, mega 20, 200
eMate 192
iPad 192
Newton 192

application
ad hoc 136
corporate, expanding into the cloud 94
customizations 103
dependencies 105
deployment models 4
development

cost no longer a barrier 212

predictions about evolution of 205–212
adoption and growth of mashups

208–210
evolution of development tools to build

mashups 210–211
higher-level services with unique

APIs 208
PaaS and FaaS as predominant

tools 210
rapid evolution for different storage

mechanisms 207
role of application frameworks

205–206
second and third tiers running in the

cloud 206–207
stronger options to protect sensitive

data 207–208
success of non-Western developers 212

distributed 136
failure point, determining 156
frameworks

and growth of cloud computing 205–206
popular 206

high-scale 101
legacy, and the cloud 87
lifetime, and cloud deployment 60
mission-critical 63
nonstrategic 62
overprovisioned 117
owner, roles and responsibilities 83
patterns, best for the cloud 101–103
performance, testing 156
real-time 63
robustness 174
scale 175–176
scaling 24, 31
standardization on browser platform

190–191
stingy 174

application logic tier, running in the cloud
206

application server 133
and N-tier architecture 133

application service provider, hype 2
application stack, and functional tests 159

226 INDEX

Apps.gov 97
Aptana, and Ruby on Rails 44
architect 150
architecture

and automated deployment 154
cloudbursting 119
clustered 133
definition 103
deployment 138
distributed 32
multitier 133

Army, use of cloud 204
ARP cache poisoning 82
array, associative 32
artificial intelligence, hype 2
ASP 13
Atlassian Bamboo 159
AT&T Business Solutions, cloudbursting

scenarios 122
attribute-value 34
auditability 74
AUT 156
authentication 219

billing validation 76
multifactor 77, 208
single-factor 77
two-factor 75

authorization 219
autocomplete 165
automation 3, 5, 84, 154
auto-scaling 36
availability

9s 172
and network connectivity 174
definition 171
in a private cloud 86
measuring 172

from multiple global locations 185
planning for failure 173
unplanned 173

AWS 34
access control 76–80

certificate, generating 79
identity verification 77

key 78
key pair 79
sign-in credentials 77

accessing bastion host 81
evaluating 46
host-based firewalls 82
Management Console 79, 184
Secret Access Key 83

AWS Start-Up Challenge 66
Azure 39–42

API 40–42, 121
AppFabric Access Control SLA 180
architecture 39
Compute SLA 179

Connectivity Downtime 179
Monthly Connectivity Uptime

Percentage 179
evaluating 47
lock-in 47
operational dashboard 183
PaaS 40
pricing 40
SLAs 179–180
SQL Server SLA 180

scheduled maintenance 180
Storage SLA 180

error rate 180

B

backup
and cloud computing 68
data storage service 62
remote 68

Baidu, use of Hadoop 146
bandwidth

elastic 153
utilization 55

BatchPutAttributes 34
Bechtel

cost and efficiency, vs. competitors 96
private cloud 96

best-effort basis 63
BI 67

as SaaS 67

INDEX 227

Big Switch, The (Nicholas Carr) 98
BigTable 33, 42, 104

in Google App Engine 33
scalability 33
structure 33
usage examples 33

billing
automated 26
metered 3, 6, 84
validation 76

biometric 75
Black Friday 86
Blogger, I/O as bottleneck 106
bootstrap 64
bottleneck

in traditional deployment 150
master as 109

broker, and SOA 137
browser

evolution into operating system 191
platform, application standardization on

190–191
browser farm 160
Browser Wars 165
BrowserCam 166
BrowserLab 166
BrowserMob 148, 164
B-tree 33
bucket

adding objects to 126
deleting 126
location constraint 126
modifying 83
new, creating 125
request payment configuration 126
Requester Pays 125
S3 30, 125

buffer-overflow attacks 208
build agent 159
Bureau of Alcohol, Tobacco, Firearms, and

Explosives, use of cloud 204
burst compute 102–103
bursting 116
business continuity, plus cloudbursting 123

business criticality, and choosing a public
cloud provider 170

Business Insights, predictions about
mashups 210

business intelligence 35
business logic 132
business service 172
businesses, small and medium, using the

cloud for 67–69

C

candidate key 32
C#, and Selenium 160
capacity

on demand 115–124
variability 60

CAPEX. See capital expenses
capital expenses

definition 51
in various application deployment

models 4
shift to operational expenses 4

economic benefits of 6
Carr, Nicholas 116

The Big Switch 98
CC 90
CDMI 29
CDN 70, 175
Certificate Authority 79
Chinese wall 208
Chrome 191

and Selenium 160
CI 158–159

adding build agents 159
CIDR block 81
ciphertext 220
Citrix, and open source cloud 202
CLC 90
client

requests 27
stateless 132

client-server 132
client-server era 10
Clinton, Bill 70

228 INDEX

Clinton, Hillary 70
cloud

adoption
government leadership 204
slowed by security concerns 73–75

and confidential data 63
and consumer internet 189–194
and entrepreneurs 64
and legacy systems 63
and nonstrategic applications 62
and real-time/mission-critical

applications 63
and scale volatility 60–62
and short-term applications 60
API 19, 27–28
as engine of growth for early

adopters 199
bandwidth, cost 57
best-effort basis 63
billing model 53
classification 18, 37–46
compliance 176
database 19, 30–35

drawbacks 35
dedicated services 90
deployment 152–156
economics 24
economies of scale 85, 87
elasticity 19, 36–37, 176
file systems 128
geographic dependence 174
hybrid. See hybrid cloud
improving production operations with

152–155
in the enterprise 194–197
infrastructure

expertise required to run 87
scale 5

lack of up-front costs 64
load balancing, cost 58
managing predictable traffic peaks 61
metaphor, origin 8
model

cost structures 4
for IT 53

lack of startup fees 4
operations

measuring 181–186
visibility 181–185

through third-party providers 185–186
private 16, 20, 44–46, 72, 195–196

and control over security and
compliance 195

and legacy apps 195
automation 84
availability 86
concerns 45
contrarian view 45
definition 84
deployment

concerns about 87–88
hosted 88–89
open source 88–89
options 88–92
proprietary 88–89
system integrator 88

elasticity 84
in practice 95–98
long-term viability 98
open source 90–92
pay-for-what-you-use 45
primary considerations 85
rate of innovation behind public

clouds 88
rationale 84–92
security 85–86
small scale 87
user community 85, 87
virtualization 84

provider
accountability 181
and SLAs 178–181
built-in verification 80
competitive factors 178
connections to internet backbone 174
cost sensitivity 201
costs, vs. cost of data centers 199
choosing 46–48
economies of scale 198
ease of switching between 177–178

INDEX 229

generating certificate 79
incident response 80
notification page 181
operational dashboard 182–184
performance, tracking 181–186
public, economic advantages 87
security 177
staffing 201
standardized platforms 201
stored data verification 82
transparency 181–185
variable pricing 86

provisioning, elastic, vs. data-center
provisioning 117

public 16
access control 76–80
and legacy apps 195
and SAS 70 76
API endpoint 82
business attributes 84
co-mingling security 82
data center security 75–76
data storage security 83
information security 73–83
network and data security 80–83
network security 81–82
operating system security 81
principles 84
privatizing 89
provider, choosing 170
spending, in perspective 85
system control security 82

ready for? 154
reliability 139–146
scale

definition 100
scaling 19, 36–37
security 198

vs. traditional security 73
smallest possible system 90
SOA as precursor 132–139
storage 19, 124–129

API 125–128
attributes 125
cost 29, 128

 definition 124
geographic control 129
latency 129
on demand 29
S3 125
saving persistent data 29–30
standard 29
unstructured 30
uses 29
virtualized 29

support for innovation 199
technological underpinnings 19–37
usability, future improvement 199
vendor taxonomy 13
virtual private 72, 92–95

API 93–94
and disaster recovery 95
elastically scaling websites into 94
expanding corporate apps into 94
how it works 92–93
usage scenarios 94–95

virtual VPN 58
virtualized 19
when not to use 63–64
when to use 59–63

cloudbursting 92, 102, 115–124
appliance 121
architecture 119–120
business case 117–118
data-access problem 122–124
definition 116
implementing 120–121
independent clusters 122
internal data center plus cloud 116–117
introduction 116
need for standards 121
on-demand data placement 123
plus business continuity/disaster

recovery 123
pre-positioned data 123
remote access to consolidated data 123

cloud computing
agility benefits 7
and deadline-driven, large compute

problems 70

230 INDEX

and evolution of IT 8–13
and large data sets 69
and online web presence 70
and product development 68
and small and medium businesses 67–69
and SOA 138
and zero-capital start-ups 64–67
as disruptive force in mobile world 193
automation 5
backup and file-storage systems 68
benefits 6–8
conversion of capital expenses to

operational expenses 6
corporate website 67
definition 1
demand variability 86
economics 51–59
efficiency benefits 7
elasticity 5
enterprise 69–71
era 10
first reference to 8
five main principles 3–6
future phases 194

ascendancy of private cloud 196
internal cloud migration 195
startups doing it hard and manually 195
transition to utility computing 196–197

hype 2
metered billing 6
predictions about evolution of 198–205

500,000 servers costing $1 billion by
2020 200

Amazon’s APIs will lead the way
202–203

cheaper, more reliable, more secure,
easier to use 198–199

engine of growth for early adopters 199
government leadership in cloud

adoption 204
much lower costs than corporate data

centers 199
open source dominance 201
ratio of administrators to servers 201
SaaS use of basic web standards 205

ultimate ISO cloud standard 203–204
private 73
reliable 132
security 8
service types 13–16
virtualization 4
vs. non-cloud-based, future predic-

tion 197
X-as-a-Service 13

Cloud Computing Interoperability Forum
(CCIF), as part of Cloud Standards
Coordination Working Group 203

Cloud Standards Coordination Working
Group 203

CloudFront 39, 70, 129
CloudTest 163
CloudWatch 184

accessing 184
metrics 184

clustering, and redundancy 140
ColdFusion 207
colocation 52

95th percentile billing model 57
contracts 52
facility 52

command-line logging 83
commodity hardware 5
communication

asynchronous 139
secret 218

compatibility 177–178
competition, and the cloud 198
competitive advantages from efficiency

benefits 7
compliance 176
component, failure, handling 133
compute unit 56
computing

device-based 192–193
elastic 24
high-performance 70
paradigm shifts 10
pooled resources 3–4
virtualized 3

INDEX 231

Compuware, projected computing mix 194
confidentiality 219, 222

persistent 223
connection, limiting 82
consumer internet, and the cloud 189–194
consumers and cloud apps 194
container 29
content delivery, and combating latency 129
continuous deployment 168
Continuous Integration in .NET 159
corporate website, cloud computing and 67
cost

allocation, colocation as proxy for 55
up front 64

CPC
cloud visibility dashboard 185
measuring performance and

availability 185
Cray-1 11
CreateAutoScalingGroup 37
CreateCustomerGateway 94
CreateDomain 34
CreateLaunchConfiguration 37
CreateLoadBalancer 36
CreateOrUpdateScalingTrigger 37
CreateVpc 94
CreateVpnConnection 94
CreateVpnGateway 94
credentials 27, 77
CRM

and transference 101
Salesforce.com 44

crowd sourcing 158, 167
crypto-algorithm 219
cryptography 218–222

algorithms 219
asymmetric 221
authentication 219
authorization 219
confidentiality 219
definition 218
digital signature 221
encryption 221
identify 219

integrity 219
key 219
nonrepudiation 219
private key 221
public key 78, 221
shared-key 220
symmetric 220

CSA 203
as part of Cloud Standards Coordination

Working Group 203
Customer Gateway 94
Cyber Monday, and load testing 162

D

data
anomalies 107
archiving in the cloud 29
backing up to cloud storage 29
backup storage 62
centralizing 80
combating latency 129
confidential 63

deleting 64
consolidated, remote access to 123
denormalized 108
encrypting before uploading to

cloud 83
hoarders 124
in transit 83
integrity 113
joining 113
keeping secret 73
leakage 80
nonrelational 32
normalized 107
parallelized 108
partitioning 31
persistent, saving in cloud storage 29–30
placement, on-demand 123
pre-positioned 123
rebalancing 112
redundant 32
relations 30
replicating 33

232 INDEX

replication 31, 109
and redundancy 140

segregating 80
storage, security 83
stored, verification 82
streaming 29, 129
structured, storing in cloud

database 30–35
table 30
transactional 30
uniform allocation 110

data center 19
Amazon 22
cooling 20
cooling towers 22
cost 21

vs. costs of cloud providers 199
Dalles, OR 21
economies of scale 12, 19–23
efficiency 24
evolution 11–12
Google 21
hardware 21
mega 20, 200

and virtualization 26
costs 200
labor 201

Microsoft 23
modularity 23
network connectivity and bandwidth 20
platform complexity 201
power 20, 21
provisioning, vs. elastic cloud

provisioning 117
PUE 24
scaling 21–22
security 75–76

physical 75–76
structure 20
Quincy, WA 22
roofless 23
security 20

by obscurity 75
servers 21
staffing 201

Data Center-as-a-Service, private clouds
44–46

database
architecture, traditional, vs. sharding

107–109
centralized 104
consistency

eventual 32
guarantees 32

decomposition 105
item-oriented 32
join 33
key-value 32
master-slave 109
scaling 108
shared-nothing partitioning 104
updates, frequent, and scaling 104

DDoS attack 82, 208
decision support 35
decryption 219
DeleteAttributes 35
Dell

and mega data centers 199
and open source cloud 202

demand, event-driven spike 61
denormalizing 108
Department of Homeland Security, as part

of FedRAMP 204
Department of the Treasury, use of cloud

204
deployment

architecture, traditional 149–150
automating 154–155
cloud 152–156
continuous 168
cost 152
typical 149–152

deployment model, cost comparison 53
depreciation 60
deprovisioning, automated 116
design, definition 103
development

accelerating 155–156
single-threaded 157

development environment 149

INDEX 233

device-based computing 192–193
Digg

scale of 32
shared-nothing partitioning 105

digital signature 79, 221
and XML Signature 222

DISA
private cloud 97
Rapid Access Computing Environment

(RACE) 97
disaster recovery 20, 68

and virtual private clouds 95
plus cloudbursting 123

disk storage, elastic 153
disk, virtual, synching to cloud 29
distributed computing, MapReduce 141
distributed grep 145
Distributed Management Task Force

(DMTF), as part of Cloud Standards
Coordination Working Group 203

distributed processing, and MapReduce 143
DoD

as part of FedRAMP 204
DISA 97

domain, in SimpleDB 34
DomainMetadata 34
downtime per year 173, 181
drug development, and cloud computing 69
dual tree 115
dynamic scaling 5

E

eBay
and internet scale 103
scale of 32
shared-nothing partitioning 105

EBS 28, 58, 128, 207
ebXML 137
EC2 15, 37–39

and browser farms 160
and EBS 128
and Eventseer 119
and Xen 201
API 28, 121

documentation 28
API calls, using to creating VPC 94
automatic scaling 38
co-mingling security 82
elasticity 176
evaluating 46
failover 38
lock-in 47
operational dashboard 183
pricing 39
Selenium Grid 160
SLA, Region Unavailability 178–179
use of Xen paravirtualization 38
using in Amazon VPC 92

Eclipse, and sharding 113
economies of scale 19–23, 26

in a private cloud 85, 87
efficiency benefits 7
elastic people 167
elastic storage 102–103
elasticity 3, 5, 36–37, 84, 176

and celebrity deaths 36
electricity, generation, comparison to cloud

computing 98
Electronic Business using eXtensible

Markup Language (ebXML) 137
Eli Lilly

and Amazon AWD cloud 70
cloud computing in the enterprise

69–70
EMC 89
encryption 219
EngineYard, and Ruby on Rails 44
Enomaly 88
enterprise

cloud in 194–197
using the cloud for 69–71

enterprise IT, survey 74
Enterprise Mashup Markup Language

(EMML) 210
entrepreneur 64

bootstrapping 64
challenges 64
need for venture capital 65

234 INDEX

Eucalyptus 46, 88–89
clusters 91
elasticity 176
interfaces 91
private cloud implementation 90–92
Xen 90

Eventseer.net, cloudbursting 102
architecture 119–120
business case 118

Expedia, data center, build-out 12

F

FaaS 16
as predominant tool for app construction

210
Facebook 193–194

and internet scale 101, 103
I/O as bottleneck 106
scale of 32
shared-nothing partitioning 105
sharding 106
storage 124

capacity 106
use of Hadoop 146
user-created apps 211

fat client 191
Fawcett, Farrah 36
Federal Risk and Authorization Management

Program (FedRAMP) 204
federated 105
file storage, and cloud computing 68
Firefox 191

and Selenium 160
firewall 53, 74

public cloud 81
five 9s 172
Flash 207

history 190
Flickr 194

and internet scale 101, 103
database partitioning scheme 113–114
I/O as bottleneck 106
profile 113
reliability strategy 114–115

shared-nothing partitioning 105
sharding 113–115
storage 124

FlightCaster 66
FLOPS 11
Force.com 44

and App Engine 44
AppExchange 44
as example of FaaS 16
evaluating 48
evolution into FaaS 210
lock-in 48
pricing 44

foreign key 32
Fort Knox, Salesforce.com data center 75
Framework as a Service. See FaaS
fraud detection, and Sprint 95
Freedom of Information Act 70
Friendster, shared-nothing partitioning 105
functional testing 156, 159–161

automating 160–161
parallelization 160–161
reducing time to complete 160–161

G

Gartner Group
estimate of SaaS market size 205
private clouds 73

GetAttributes 35
GetDatabaseFor 107, 111
GFS. See Google File System
Gibson, William 189
Gmail 194

and visual testing 166
history 191

GoGrid, and Simple Cloud API 202
Gomez

measuring performance and
availability 185

study of cloud performance 175
GoodData 66
Google

Analytic, availability issues 174
and Browser Wars 165

INDEX 235

and internet scale 103
and Open Cloud Manifesto 203
Apps, vs. Microsoft Office 39
autocomplete 164
BigTable 104
commodity hardware 145
data center

build-out 12
Dalles, OR 21
mega 20, 200
security 75

Docs, vs. Microsoft Office 39
Maps

history 191
use in mashups 209

public cloud investment 84
reliability 145
search requests, cloud computing in 8
server maintenance 96
sharding 104
shards, rebalancing 112

Googleplex 22
government leadership in cloud

adoption 204
Gramm-Leach-Bliley Act (GLBA), and

SAS 70 76
green field 150
green-screen terminal 10
growth and the cloud 199
growth, exponential 102
GSA 122

as part of FedRAMP 204
prebidding cloud services 204

H

Hadoop 142, 146
Hadoop in Action 146
hand-geometry scanner 75
hardware

as mashup of standard cells 210
commodity 5
deep security 208
failure 154
inspection of infrastructure 177

Hardware as a Service. See IaaS
Harkins, Peter 70
Harvard, and Facebook 102, 106
hashing algorithm, bad 111
hash table 32
Henderson, Cal 113
Heroku, and Ruby on Rails 44
Hibernate, and sharding 113
High Scalability 113
highscalability.com 113
Hilton, Perez 36
HIPAA 64, 74

and compliance 177
and SAS 70 76
and the public cloud 86

horizontal scalability 173
host, bastion 81
hot cloud standby 121
HP

and visibility 185
Mercury 7

HP-UX 63
HTML 5, and SaaS 205
HTTP

GET 128
PUT 128

Hudson 159
Hulu, use of Hadoop 146
hybrid cloud 16
Hyperic, CloudStatus, measuring

performance and availability 185
hypermedia 27
hypervisor 25, 38

and promiscuous mode 82
deep security 208
separation from guest 81

I

IaaS 15, 39, 47
and cloudbursting 119, 121
AWS 46
Azure 39–42
EC2 37–39
in early stage of cloud computing 195

236 INDEX

LAMP stack 38
IBM 89

and Open Cloud Manifesto 203
and Simple Cloud API 202
and visibility 185
cloudbursting appliance 121
use of Hadoop 146

IDC
and SaaS 205
IT cloud concerns 73

identity 219
verification 77

IEEE Spectrum 23
IETF, and XML Signature 222
image processing, real time 63
index 107

inverted 146
indirection 111
information

security
and social engineering 83
in the public cloud 73–83

sensitive 64
Infosys 88
infrastructure

physical vs. virtual 56
security, traditional, vs. cloud security 73

Infrastructure as a Service. See IaaS
initialization fee 55
innovation, cloud support for 199
instance 28

connecting 28
integrity 219
Intel

and mega data centers 199
and parallelization 157

interface
browser 27
constrained 135
extensible 135
versionable 135
well-defined 135

intermodule dependency 134
Internet Explorer 191

and Selenium 160
internet scale 101–115, 152

application issues that prevent 104
interoperability, levels of 177–178
interoperable services 135
interprocess communication 138–139
intrusion detection 75
Intuit

data center
mega 20
security 75

load testing 163
invalidatable 112
I/O

latency 182
throughput 182

I/O system, and scaling 104
iPhone 193

user-created apps 211
IPtables 82
ISO cloud standard 203–204
ISP 10
ISV, product development 68
IT

deployment
cloud 59

cost 55–60
colocation 55, 59
handling peak capacity 61
internal IT 59

cost 54–55
managed service 59

cost 55–56
evolution of 8–13
infrastructure

cloud 53
colocation 52
internal IT 51
managed service 52
operational costs 54
peak utilization 61

rental model 55–56
shift from self-hosted to outsourcing 4
strategy, and public clouds 73

INDEX 237

transformation 189–197
models

comparing 51–53
cost comparison 53–59

IT Roadmap Conference and Expo 96

J

Jackson, Michael 36, 61
Java

and App Engine 42
and Selenium 160
JDO/JPA, and App Engine 43
runtime, and App Engine 43
Servlet standard, and App Engine 43

JavaScript
and autocomplete 164
history 190

JMeter 162
join operation, avoiding 32
JSP, and App Engine 43
JUnit 156

and unit testing 157
just-in-time manufacturing 53
JVM, and App Engine 43

K

Kaye, Doug 135
Kelsey Group 193
key

access 78
candidate 32
definition 219
foreign 32

in a sharded database 113
keeping secret 219
length 220
management 208
pair 79–80
primary 32
private 78, 221
public 27, 78, 221
S3 30
secret 78

SSH 81
uniqueness 219

key-based authentication 83
key-value pair 32
Keynote, measuring performance and

availability 185
Kunda, Vivek 96

L

LA Times, scaling issues 36
Lam, Chuck 146
LAMP stack 38, 54
latency 129
legacy application

and private clouds 45
and the cloud 87

legacy system 63
Lightbody, Patrick 148
Limelight 175
LinkedIn, I/O as bottleneck 106
Linux 201

and implementing a private cloud 90
Eli Lilly use of 70
guest OS 83

Lisp, map and reduce functions 141
ListDomains 34
Litmus 166
LiveJournal, and sharding 113
load testing 7, 156, 162–165

and Pylot 65
browser-based, cloud-based 164–165
cloud-based, cost 163
script, typical 164
traditional 162

load-balancer 53
load-balancing 103

and cloudbursting 117
and redundancy 140
Flickr 115

LoadRunner 7, 162
LoadStorm 163
lock-in, avoiding 46
loose coupling 133–135

and sharding 111

238 INDEX

and SOA 136–137
critical application characteristics 135
techniques to create and maintain 135

Los Angeles, government use of cloud 204

M

machine, parallel 158–159
magic bullet 59
mainframe 10
man trap 75
managed service 52

contract 52
value proposition 56

management plane 81
manual testing 156, 167–168

crowd sourcing 167
map function 145
MapReduce 141–146

achieving reliability 141
distributed grep 145
how it works 143–145
inverted index 146
map 142
master 141
parallel programming 141
reduce 142–143
reverse web-link graph 145
roots in Lisp 141
term-vector per host 146
usage examples 145–146
worker 141

MashQL 210
mashup 208–211

component exchange 210
components listed at

ProgrammableWeb.com 211
development tools 210–212
lack of formal standard 210
support ecosystem 210
tools to build 210
use of Google Maps 209

Mashup API 211
master-slave 109

master-slave replication 151
McKinsey, private clouds 73
MD5 hash 80, 82
mean-time-to-failure 141
Mechanical Turk 167

Turkers 167
MegaStore 42
Mercury 162
message

asynchronous 139
coarse-grained 135
confidentiality 222
integrity 222
persistent 139
persistent confidentiality 223
platform-independent 135
self-contained 135
self-describing 135
vendor-independent 135

message queue 138
messaging, stateless 135
metadata, in S3 30
metered billing 3, 6, 84
Microsoft

and Browser Wars 165
and Open Cloud Manifesto 203
and Simple Cloud API 202
announcement of renting cloud space 9
Azure 16
data center

build-out 12
PUE 23
Quincy, WA 22
security 75

mega data centers 200
.NET, CLR 40
Office, vs. Google Docs 39
Tablet PC 192
Visual Studio, Hypervisor 39

middle tier 132
middleware, Appistry 95
migrating users to/from shards 111
mobile revolution 193–194

INDEX 239

modulo 110
Mosaic Mozilla 190
Mozilla 190

and Browser Wars 165
MRI 63
multicore 157
multicore server 5
multifactor authentication 208
multitenancy 87
MySpace

I/O as bottleneck 106
load testing 163

MySQL
and sharding 113
dual tree 115

N

NASA
and Rackspace 202
and redundancy 140
use of cloud 204

National Archives 70
national boundaries, and security 75
national security, and public cloud

computing 86
NC 90
Nebula Cloud Platform 202
NetApp 115
netbook 192
Netscape Navigator 191
NetSeer, use of Hadoop 146
network computer 192
network security 81–82
network systems management 185
New York Times, use of Hadoop 146
Nirvanix, and Simple Cloud API 202
NIST, definition of cloud computing 116
nonrepudiation 219, 222
normalizing 107
NoSQL 32–35

distributed architecture 32
scaling 32
weak consistency guarantees 32

NUnit 156

O

OASIS, as part of Cloud Standards
Coordination Working Group 203

object, in S3 30, 125
adding to bucket 126
copying 126
deleting 126
fetching 126
retrieving information about 126

Object Management Group (OMG), as part
of Cloud Standards Coordination
Working Group 203

OCC 203
as part of Cloud Standards Coordination

Working Group 203
on-demand, and choosing a public cloud

provider 170
on-premises

and security 45, 82
transference 101

Open Cloud Manifesto 203
Open Grid Forum (OGF), as part of Cloud

Standards Coordination Working
Group 203

Open Mashup Alliance (OMA) 210
open source

and implementing a private cloud 90
client interface compatible with

Amazon 91
dominance in future clouds 201
software

and App Engine 47
definition 44

OpenNebula 88–89
OpenQA 148
OpenStack 202
Opera, and Selenium 160
Opera Software ASA, browser 191
operating system, deep security 208
operational dashboard 182–184
operational expenses

definition 51
in various application deployment

models 4

240 INDEX

shift from capital expenses 4

economic benefits of 6
OPEX. See operational expenses
OpSource 88
Oracle 89
orchestration, and SOA 136
ORM 35
OS

guest 25, 38, 74, 83
Linux 83

security 81
virtualization 24

out of band 77

P

PaaS 16
and cloudbursting 121
as predominant tool for app

construction 210
App Engine 42–43, 47
Azure 39, 47
Force.com 44, 48
Ruby on Rails 43, 48

packet filter 74
parallel machines 158–159
parallel processing 133
parallel programming, MapReduce 141
parallelization 157–168
ParaScale 89
paravirtualization 38, 81
password 77
password-based access, disabling 83
pay-as-you-go 6, 13, 39
pay-only-for-what-you-use 51
PCI DSS, and compliance 176
peak capacity 60–61
peak load 176
peak utilization 61
penetration testing 156, 208
performance

and network connectivity 174
definition 171
geographic dependence 174
measuring 173

from multiple global locations 185
requirements 69
testing 156

performance engineer 150
performance testing 156
Perl

and Ruby 44
and Selenium 160

persistent confidentiality 223
Pew Internet & American Life Project 190
PHP

and Selenium 160
and Simple Cloud API 202
characteristics 206

PIN 77
Platform as a Service. See PaaS
PlayStation, and parallelization 157
PlentyOfFish 124
Poneman 8
pooled resources 3–4, 84
portal 209
power outage 20
predictions

about evolution of application
development 205–212

adoption and growth of mashups
208–210

development cost no longer a
barrier 212

evolution of development tools to build
mashups 210–211

higher-level services with unique
APIs 208

PaaS and FaaS as predominant
tools 210

rapid evolution for different storage
mechanisms 207

role of application frameworks 205–206
second and third tiers running in the

cloud 206–207
stronger options to protect sensitive

data 207–208
success of non-Western developers 212

about evolution of cloud
computing 198–205

INDEX 241

500,000 servers costing $1 billion by
2020 200

Amazon’s APIs will lead the way
202–203

cheaper, more reliable, more secure,
easier to use 198–199

engine of growth for early
adopters 199

government leadership in cloud
adoption 204

much lower costs than corporate data
centers 199

open source dominance 201
ratio of administrators to servers 201
SaaS use of basic web standards 205
ultimate ISO cloud standard 203–204

computing 189
primary key 32
privacy rules 125
private key 78, 221
privilege escalation 81, 83
processing time 182
product development, and cloud

computing 68
product, launching on the cloud 69
production environment 149

typical 150
production operations, improving

152–155
ProgrammableWeb.com, mashup

components 211
promiscuous mode 82
prototyping, and internet scale 102
provisioning

automated 26, 116
automatic 5
resources 27
standards 178

public key 27, 78, 221
public-key cryptography 221
PUE 23
PutAttributes 34
Pylot 7, 65
Python 7

and App Engine 42–43

and Selenium 160
characteristics 206

Q

QA, and cloud computing 68
quality of service (QoS) 6, 29
Quantcast 61–62
query load 106

R

Rackable/SGI 21
Rackspace 149

and NASA 202
and Open Cloud Manifesto 203
and Simple Cloud API 202
and Xen 201
Cloud SLA 180–181
Cloud status page 182
resource constraints 86
Sites SLA 180
use of Hadoop 146

RAID, and redundancy 140
Ramleth, Geir 96
Rapid Access Computing Environment

(RACE) 97
R&D, and cloud computing 69
RDBMS 30

definition 30
in the cloud 30
scaling 31

Reagan, Ronald 186
real-time application 63
RedHat 201
reduce function 145
redundancy 54, 109, 140
reengineering 103
referential integrity 31, 113
regulatory requirements, and public cloud

computing 86
relational model 30
reliability 133, 139–146
remote-hands capability 52
Remy, Dave, Securing Web Services with

WS-Security 73

242 INDEX

replication
dual master 109
lag 114

resources
and REST 27
pooled 84, 153
provisioning 27

REST 27
and mashups 210

RESTful
cloud storage 124
definition 27

reverse web-link graph 145
risk mitigation 102
robustness 174
root access 83
Rosenberg, Jothy, Securing Web Services with

WS-Security 73
RSA, SecurID 77
Ruby, and Selenium 160
Ruby on Rails 43

characteristics 206
evaluating 48
lock-in 48

S

S3 28, 38
and EBS 128
and Eventseer 119
and storage 153
API 29
bucket 30, 125
cloud storage 125

example API 125–128
key 30
object 30, 125

metadata 30
pricing 39
SLA 178–179

Error Rate 179
InternalError 179
Monthly Uptime Percentage 179
ServiceUnavailable 179

usage 30

SaaS 16, 27, 63
and HTML 5 205
and security 75
as requirement for cloud computing 12
Azure 39
BI as 67
evolution 13
GoodData as example of 66
in early stage of cloud computing 195
product development 68
Saleforce.com 44
use of web standards to grow and stay

current 205
Safari 191

and Selenium 160
Salesforce.com 44, 68

as example of SaaS 16
security 75
software 96

SAN 153
SAS 70 76, 171

and the public cloud 86
SAS 70 Type II 177
Savvis 88–89
SC38 203
scalability 36

high, in nonrelational database 33
scale 175–176

elastically adjusting 3
variability 60

scaling
application 24
horizontally 32, 106, 108
importance of 36
problems 102
vertically 106

Schneier, Bruce 219
Secret Access Key 83
secret communication 218
Secure Data Connector 92
SecurID 77
Securing Web Services with WS-Security (Jothy

Rosenberg and Dave Remy) 73
security 8, 177

INDEX 243

by obscurity 75
co-mingling 82
concerns, slowing cloud adoption 73–75
data 80–83
data storage 83
in a private cloud 85–86
logical 20
network 80–83
operating system 81
perimeter 75
physical 20, 75–76
requirements 69
secret communication 218
standards 177
stronger options 207–208
system control 82
testing 156
through obscurity 20
XML Encryption 222
XML Signature 222

Selenium 148, 160
Grid, and browser farms 160

self-hosted model 4
elasticity 5

server
capacity, measuring in compute units 56
commodity 53
multicore 5
provisioning, and virtualization 26
responses 27
sizes 20
utilization 25
world consumption and emissions 22

service
consumer 137
developing 137
interactions 136
interoperable 135
provider 137

service-level agreement. See SLA
Service-Oriented Architecture. See SOA
Servlet Specification, web application 191
shard

dual master 109

master-slave 109
sharding 103–115, 175, 207

advantages 105–106
and Facebook 106
and Flickr 113–115
challenges and problems 112–113
changes to application 107
common partitioning schemes 109–111
data

denormalized 107–108
highly available 109
not replicated 109
parallelized 108
small 108

definition 105
directory-based 111–113
faster queries 105
GetDatabaseFor 107
hash-based 110
high availability 105
introduction 104–106
joining data 113
key-based 110
lack of support for 113
range-based 110
rebalancing data 112
referential integrity 113
scheme 104
simplest model of 105
strategy 106
unbalanced, avoiding 111
vertical 109
vs. traditional database architecture

107–109
write bandwidth 106

shared secret 77
shared-key cryptography 220
shared-nothing 104–105
Simple Cloud API 202
SimpleDB 33, 39

API 34
domain 34

single point of failure 132
in a shard 109

244 INDEX

single-threaded 157
Skype, shared-nothing partitioning 105
SLA 26, 173, 178–181

violations 178
Smalltalk, and Ruby 44
smartphone 193–194

adoption 193, 194
vs. PC 193

SOA 135–138
and cloud computing 138
and loose coupling 136–137
and web services 137–138
as cloud precursor 132–139
as requirement for cloud computing 12
hype 2
orchestration 136
service consumer 137
service provider 137
services 136

SOAP, and encryption 222
SOASTA 163
social engineering 83
software

licensing, and virtualization 26
pricing, and virtualization 26

SOX 74
and SAS 70 76

space shuttle, and component
redundancy 140

spoofed traffic 82
Sprint, private cloud 95–96
SQL 30

movement away from 32
SQS 39, 138–139

and cloudbursting 121
and Eventseer 120

squid cache 115
SSDS 34
SSL

and asymmetric encryption 222
and shared-key encryption 221

staging, cost 155
staging environment 149

defining 150–151

standards
future development 202–203
ISO cloud standard 203–204

startup
2000 vs. 2010 64–65
lower barriers to entry 65

stateless client 132
stickiness 136
storage

cloud 124–129
encrypted 74
expanding 124
exponentially expanding 124
management 102
mechanisms, rapid evolution of 207
on demand 29
structured 32
virtualized 29

Storage Networking Industry Association
(SNIA) 29

as part of Cloud Standards Coordination
Working Group 203

storage tier, running in the cloud 206
string, human-readable 135
strong coupling 134
Structure and Interpretation of Computer

Programs 141
structured query language. See SQL
sudo 83
Sun

and Open Cloud Manifesto 203
network computer 192
Project Kenai Cloud 27

SunGard 88, 89
Super Bowl 36

and load testing 162
Sussman, Gerald Jay 141
Sussman, Julie 141
sweat equity 65
SYN cookies 82
synthetic transaction 185
system

distributed 132–133
legacy 63
loosely coupled 132

INDEX 245

T

tablet 192
Target.com, daily U.S. visitors 61
taxonomy, cloud vendors 13
TechCrunch 36
term vector 146
terminal, green-screen 10
Terremark, and USA.gov 122
test automation 156
test lab, virtual, in the cloud 68
test transaction 185
testing

accelerating 155–156
acceptance 156
cost 155
cloud-based

acceleration 156
cost savings 155–156

single-threaded 157
vulnerability testing 208

testing environment 149
cloning 156
defining 150–151

thin client 191
three 9s 172
three-tier 53
throttle 103
tight coupling 133–134

critical application characteristics 135
time shared 10
time-sharing 24
TM Forum, as part of Cloud Standards

Coordination Working Group 203
TMZ.com 62

scaling issues 36
traffic spike 61

traffic
event-based, and cloudbursting 117
seasonal, and cloudbursting 117
spoofed 82

transaction
and redundancy 140
synthetic 185
test 185

transference 101, 103
transit

inbound 57
outbound 57

triple modular redundancy with
spares 140

TurboTax, load testing 163
Twitter

and internet scale 102
scaling issues 36

two-man-rule 82

U

Ubuntu, and implementing a private
cloud 90

UDDI 137
UEC 90
ultraportable 192
Unisys 89
United States

Apps.gov 97
Army, use of cloud 204
Bureau of Alcohol, Tobacco, Firearms,

and Explosives, use of cloud 204
CIO, proponent of cloud 204
Congress, approval of electronic

signatures 222
Department of Homeland Security, as

part of FedRAMP 204
Department of the Treasury, use of

cloud 204
FedRAMP 204
government leadership in cloud

adoption 204
private clouds 96–98

unit testing 156–159
parallelization 158

UNIX, private cloud implementation 88
untethered 193
Uptime Institute 24
usability testing 156

crowd sourcing 168
usage, event-driven spike 61
USA.gov 122

246 INDEX

USA PATRIOT Act 75
user community, in a private cloud 85, 87
user interface, verifying 156
UserTesting 168
uTest 168
utility computing 196–197

definition 188

V

vendor
availability 171–175
choosing 170–178

business considerations 170–171
questions to ask 170
technical operational considerations

171–178
contractual viability 171
financial viability 170
operational viability 170
performance 173–175
taxonomy 14

venture capital, necessity of 65–66
venture capitalist 64
Victoria’s Secret 36
video surveillance 75
Virgin Atlantic, cloud computing in the

enterprise 70
virtual machine 25

architecture 25
automatic creation/deletion 3, 5
image 24
instance 24

virtual machine monitor 24
virtual memory 24
Virtual Private Cloud 207
virtual VPN, and IPSec tunnels 58
VirtualBox 90
virtualization 4, 24 –26, 84

and deployment 152
as requirement for cloud computing 12
cloud 24, 26
corporate 26
disk 82
effect on corporate data centers 26

in the enterprise 85
layer 25
platform 24
server 24–25
time-sharing 24

virtualized computing 3, 10
virtualized disk 82
visibility 181–185

through third-party providers 185–186
visual testing 156, 165–166
VLAN 52, 74
VMM 25, 38, 81
VMS 63
VMware 12, 88, 90, 178

and Open Cloud Manifesto 203
virtual machine architecture 25

voltage/frequency scaling 21
VPC 28, 46
VPN

and virtual private clouds 93
and Virtual Private Network 46

Vtravelled.com 70
vulnerability testing 208

W

W3C
and XML Encryption 223
and XML Signature 222

Washington Post, cloud computing in the
enterprise 70

Watson, T. J. 189
Web 2.0, and mashups 210
web application 191

architecture 132
deployment 149
second and third tiers running in the

cloud 206
web service

and SOA 137–138
XML Encryption 222
XML Signature 222

website, scaling elastically in the cloud 94
Weinman, Joe 122
Wikipedia, shared-nothing partitioning 105

INDEX 247

Windows Server 2008 39
working set, too large, and scaling 104
writing, as bottleneck 106
WSDL, and loose coupling 135

X

X.509 27
and Azure 40

X.509 certificate 78–79
and firewall 82
and system control security 82

XaaS 13, 15
X-as-a-Service. See XaaS
XBox, and parallelization 157
Xen 38, 90, 201
XL instance 86
XML, and SOA 136
XML Encryption 222
XML Signature 222
XML-DSig 222
XMLHttpRequest, history 191
XQuery, and NoSQL 32
xUnit, and unit testing 157

Y

Yahoo!
and internet scale 103
data center

build-out 12
mega 20
Quincy, WA 22
security 75

use of Hadoop 146
Yahoo! Mail, and visual testing 166
YouTube 194

and internet scale 101
cost of bandwidth 96
shared-nothing partitioning 105
storage 124

Z

Zend, and Simple Cloud API 202
zero-capital startup, using the cloud for

64–67
zero-day attack 208
Zillow.com, and transference 101

P
ractically unlimited storage, instant scalability, zero-down-
time upgrades, low start-up costs, plus pay-only-for-what-
you-use without sacrifi cing security or performance are all

benefi ts of cloud computing. But how do you make it work in
your enterprise? What should you move to the cloud? How?
And when?

The Cloud at Your Service answers these questions and more.
Written for IT pros at all levels, this book fi nds the sweet spot
between rapidly changing details and hand-waving hype. It
shows you practical ways to work with current services like
Amazon’s EC2 and S3. You’ll also learn the pros and cons of
private clouds, the truth about cloud data security, and how to
use the cloud for high scale applications.

What’s Inside
How to build scalable and reliable applications
Th e state of the art in technology, vendors, practices
What to keep in-house and what to offl oad
How to migrate existing IT to the cloud
How to build secure applications and data centers

A PhD in computer science, Jothy Rosenberg is a former Duke
professor, author of three previous books, and serial entrepreneur
involved in the cloud movement from its infancy. A technology
entrepreneur with a PhD in nuclear physics from MIT, Arthur
Mateos has brought to market pioneering SaaS products built on
the cloud.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/CloudatYourService

$29.99 / Can $34.99 [INCLUDING eBOOK]

THE Cloud AT Your Service

ENTERPRISE DEVELOPMENT

Jothy Rosenberg Arthur Mateos

“Cuts through the
 complexity to just what’s
 needed.”
 —From the Foreword by
 Anne Th omas Manes

“A defi nitive source.”
 —Orhan Alkan
 Sun Microsystems

“Approachable coverage of a
 key emerging technology.”
 —Chad Davis
 Author of Struts 2 in Action

“Removes ‘cloudiness’ from
 the cloud.”
 —Shawn Henry
 CloudSwitch, Inc.

“Refreshing... without fl uff .”
 —Kunal Mittal
 Sony Pictures Entertainment

M A N N I N G

SEE INSERT

	Cloud
	contents
	Chapter 1 What is cloud computing?

	Chapter 2 Understanding cloud computer classifications
	Chapter 3 The business case for cloud computing
	Chapter 4 Security and the private cloud
	Chapter 5 Designing and architecting for cloud scale
	Chapter 6 Achieving high reliability at cloud scale
	Chapter 7 Testing, deployment, and operations in the cloud
	Chapter 8 Practical considerations
	Chapter 9 Cloud 9: the future of the cloud
	Appendix: Information security refresher
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

